八年级数学教案精编4篇
【路引】由阿拉题库网美丽的网友为您整理分享的“八年级数学教案精编4篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
八年级数学教案1
教学目标
1.了解分式概念。
2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件。
教学重难点
重点:理解分式有意义的条件,分式的值为零的条件。
难点:能熟练地求出分式有意义的条件,分式的值为零的条件。
教学过程
一、课堂导入
1.让学生填写[思考],学生自己依次填出:,,,.
2.问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?
设江水的流速为x千米/时。
轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=.
3.以上的式子,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是A÷B的形式。分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母。
[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零。注意只有满足了分式的分母不能为零这个条件,分式才有意义。即当B≠0时,分式才有意义。
二、例题讲解
例1:当x为何值时,分式有意义。
分析已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围。
(补充)例2:当m为何值时,分式的值为0?
(1);(2);(3).
分析分式的值为0时,必须同时满足两个条件:①分母不能为零;②分子为零,这样求出的m的解集中的公共部分,就是这类题目的解。
三、随堂练习
1.判断下列各式哪些是整式,哪些是分式?
9x+4,,,,,
2.当x取何值时,下列分式有意义?
3.当x为何值时,分式的值为0?
四、小结
谈谈你的收获。
五、布置作业
课本128~129页练习。
上面内容就是差异网为您整理出来的4篇《八年级数学教案》,希望对您有一些参考价值。
八年级数学教案2
教学任务分析
教学目标
知识技能
一、类比同分母分数的加减,熟练掌握同分母分式的加减运算.
二、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法.
数学思考
在分式的加减运算中,体验知识的化归联系和思维灵活性,培养学生整体思考的分析问题能力.
解决问题
一、会进行同分母和异分母分式的加减运算.
二、会解决与分式的加减有关的简单实际问题.
三、能进行分式的加、剪、乘、除、乘方的混合运算.
情感态度
通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品德,渗透化归对立统一的辩证观点.
重点
分式的加减法.
难点
异分母分式的加减法及简单的分式混合运算.
教学流程安排
活动流程图
活动内容和目的
活动1:问题引入
活动2:学习同分母分式的加减
活动3:探究异分母分式的加减
活动4:发现分式加减运算法则
活动5:巩固练习、总结、作业
向学生提出两个实际问题,使学生体会学习分式加减的必要性及迫切性,创始问题情境,激发学生的学习热情.
类比同分母分数的加减,让学生归纳同分母分式的加减的方法并进行简单运算.
回忆异分母分数的加减,使学生归纳异分母分式的加减的方法.
通过以上探究过程,让学生发现分式加减运算的法则,通过分式在物理学的应用及简单混合运算,使学生深化对分式加减运算法则的理解.
通过练习、作业进一步巩固分式的运算.
课前准备
教具
学具
补充材料
课件
教学过程设计
问题与情境
师生行为
设计意图
[活动1]
1.问题一:比较电脑与手抄的录入时间.
2.问题二;帮帮小明算算时间
所需时间为,
如何求出的值?
3.这里用到了分式的加减,提出本节课的主题.
教师通过课件展示问题.学生积极动脑解决问题,提出困惑:
分式如何进行加减?
通过实际问题中要用到分式的加减,从而提出问题,让学生思考,可以激发学生探究的热情.
[活动2]
1.提出小学数学中一道简单的分数加法题目.
2.用课件引导学生用类比法,归纳总结同分母分式加法法则.
3.教师使用课件展示[例1]
4.教师通过课件出两个小练习.
教师提出问题,学生回答,进一步回忆同分母分数加减的运算法则.
学生在教师的引导下,探索同分母分式加减的运算方法.
通过例题,让学生和教师一起体会同分母分式加减运算,同时教师指出运算中的.注意事项.
由两个学生板书自主完成练习,教师巡视指导学生练习.
运用类比的方法,从学生熟知的知识入手,有利于学生接受新知识.
师生共同完成例题,使学生感受到自己很棒,自己能够通过思考学会新知识,提高自信心.
让学生进一步体会同分母分式的加减运算.
[活动3]
1.教师以练习的形式通过“自我发展的平台”,向学生展示这样一道题.
2.教师提出思考题:
异分母的分式加减法要遵守什么法则呢?
教师展示一道异分母分式的加减题目,学生自然就想到异分母分数的加减.
教师通过课件引导学生思考,学生会想到小学数学中,异分母分数的加减法则,从而联想到异分母分式的加减法则,教师引导学生归纳出异分母分式加减运算的方法思路.
由学生主动提出解决问题的方法,从而激发了学生探究问题的兴趣.
通过学生的自我探究、归纳总结,让学生充分参与到数学学习的过程中来,体会学习的乐趣.
[活动4]
1.在语言叙述分式加减法则的基础上,用字母表示分式的加减法法则.
2.教师使用课件展示[例2]
3.教师通过课件出4个小练习.
4.[例3]在图的电路中,已测定CAD支路的电阻是R1欧姆,又知CBD支路的电阻R2比R1大50欧姆,根据电学的有关定律可知总电阻R与R1R2满足关系式 ;
试用含有R1的式子表示总电阻R
5.教师使用课件展示[例4]
教师提出要求,由学生说出分式加减法则的字母表示形式.
通过例题,让学生和教师一起体会异分母分式加减运算,同时教师重点演示通分的过程.
教师引导学生找出每道题的方法、如何找最简公分母及时指出学生在通分中出现的问题,由学生自己完成.
教师引导学生寻找解决问题的突破口,由师生共同完成,对比物理学中的计算,体会各学科知识之间的联系.
分式的混合运算,师生共同完成,教师提醒学生注意运算顺序,通分要仔细.
由此练习学生的抽象表达能力,让学生体会数学符号语言的精练.
让学生体会运用的公式解决问题的过程.
锻炼学生运用法则解决问题的能力,既准确又有速度.
提高学生的计算能力.
通过分式在物理学中的应用,加强了学科之间的联系,使学生开阔了视野,让学生体会到学习数学的重要性,体会各学科全面发展的重要性,提高学习的兴趣.
提高学生综合应用知识的能力.
[活动5]
1、教师通过课件出2个分式混合运算的小练习.
2、总结:
a)这节课我们学习了哪些知识?你能说一说吗?
b)⑴方法思路;
c)⑵计算中的主意事项;
d)⑶结果要化简.
3、作业:
a)教科书习题第4、5、6题.
学生练习、巩固.
教师巡视指导.
学生完成、交流.,师生评价.
教师引导学生回忆本节课所学内容,学生回忆交流,师生共同补充完善.
教师布置作业.
锻炼学生运用法则进行运算的能力,提高准确性及速度.
提高学生归纳总结的能力.
八年级数学教案3
一、教材分析:
《正方形》这节课是九年义务教育人教版数学教材八年级下册第十九章第二节的内容。纵观整个初中教材,《正方形》是在学生掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察、操作等活动经验的基础上出现的。既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。
本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形、矩形、菱形之间的内在联系。根据大纲要求,本节课制定了知识、能力、情感三方面的目标。
(一)知识目标:
1、要求学生掌握正方形的概念及性质;
2、能正确运用正方形的性质进行简单的计算、推理、论证;
(二)能力目标:
1、通过本节课培养学生观察、动手、探究、分析、归纳、总结等能力;
2、发展学生合情推理意识,主动探究的习惯,逐步掌握说理的基本方法;
(三)情感目标:
1、让学生树立科学、严谨、理论联系实际的良好学风;
2、培养学生互相帮助、团结协作、相互讨论的团队精神;
3、通过正方形图形的完美性,培养学生品格的完美性。
二、学生分析:
该段学生具有一定的独立思考和探究的能力,但语言表达能力方面稍有欠缺,所以在本节课的教学过程中,特意设计了让学生自己组织语言培养说理能力,让学生们能逐步提高。
三、教法分析:
针对本节课的特点,采用"实践--观察--总结归纳--运用"为主线的教学方法。
通过学生动手,采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念。通过观察、讨论、归纳、总结出正方形性质定理,最后以课堂练习加以巩固定理,并通过一道拔高题对定义、性质理解、巩固加以升华。
四、学法分析:
本节课重点是从培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手、观察、思考、分析、总结得出结论。在小组讨论中通过互相学习,让学生体验合作学习的乐趣。
五、教学程序:
第一环节:相关知识回顾
第二环节:新课讲解通过学生们的发现引出课题“正方形”
1、正方形的定义:引导学生说出自己变化出正方形的过程,并再次利用课件形象演示出由平行四边形的边、角的变化演变出正方形的过程。请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形。再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合即一组邻边相等与平行四边形组成菱形再加上一个角是直角可得到正方形的另两个定义:一个角是直角的菱形是正方形;一组邻边相等的矩形是正方形。此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的矩形,从而总结出正方形的性质。
2、正方形的性质定理1:正方形的四个角都是直角,四条边都相等;
定理2:正方形的两条对角线相等,并且互相垂直、平分,每条对角线平分一组对角。
以上是对正方形定义和性质的学习,之后是进行例题讲解。
3、例题讲解:求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形。此题是文字证明题,由学生们分组相互探讨,共同研究此题的已知、求证部分,然后由小组派代表阐述证明过程,教师板书,在板书的过程中,请其它小组的同学提出合理化建议,使此题证明过程条理更加清晰,更加符合逻辑,同时强调证明格式的书写。从而培养他们语言表达能力,让学生的个性得到充分的展示
4、课堂练习:第一部分采用三道有关正方形的周长、面积、对角线、边长计算的填空题,目的是对正方形性质的进一步理解,并考察学生掌握的情况。
第二部分是选择题,通过体现生活中实际问题,来提升学生所学的知识,并加以综合练习,提高他们的综合素质,使他们充分认识到数学实质是来源于生活并要服务于生活。
5、课堂小结:此环节我是通过图框的形式小结正方形和前阶段所学特殊四边形之间的内在联系,通过对所学几种四边形内在联系体现正方形完美的本质,渲染学生们应追求象正方形一样方正的品质,从而要努力学习以丰富的知识充实自己,达到理想中的完美。
6、作业设计:作业是教材159页,第12、14两小道证明题,通过此作业让同学们进一步巩固有关正方形的知识。
八年级数学教案4
教学目标:
知识目标:
1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。
2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。
3、会对一个具体实例进行概括抽象成为数学问题。
能力目标:
1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。
2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。
情感目标:
1、经历函数概念的抽象概括过程,体会函数的模型思想。
2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。
教学重点:
掌握函数概念。
判断两个变量之间的关系是否可看作函数。
能把实际问题抽象概括为函数问题。
教学难点:
理解函数的概念。
能把实际问题抽象概括为函数问题。
教学过程设计:
一、创设问题情境,导入新课
『师』:同学们,你们看下图上面那个像车轮状的物体是什么?
『生』:摩天轮。
『师』:你们坐过吗?
……
『师』:当你坐在摩天轮上时,人的高度随时在变化,那么变化是否有规律呢?
『生』:应该有规律。因为人随轮一直做圆周运动。所以人的高度过一段时间就会重复依次,即转动一圈高度就重复一次。
『师』:分析有道理。摩天轮上一点的高度h与旋转时间t之间有一定的关系。请看下图,反映了旋转时间t(分)与摩天轮上一点的高度h(米)之间的关系。
大家从图上可以看出,每过6分钟摩天轮就转一圈。高度h完整地变化一次。而且从图中大致可以判断给定的时间所对应的高度h。下面根据图5-1进行填表:
t/分 0 1 2 3 4 5 …… h/米
t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……
『师』:对于给定的时间t,相应的高度h确定吗?
『生』:确定。
『师』:在这个问题中,我们研究的对象有几个?分别是什么?
『生』:研究的对象有两个,是时间t和高度h。
『师』:生活中充满着许许多多变化的量,你了解这些变量之间的关系吗?如:弹簧的长度与所挂物体的质量,路程的距离与所用时间……了解这些关系,可以帮助我们更好地认识世界。下面我们就去研究一些有关变量的问题。
二、新课学习
做一做
(1)瓶子或罐子盒等圆柱形的物体,常常如下图那样堆放,随着层数的增加,物体的总数是如何变化的?
填写下表:
层数n 1 2 3 4 5 … 物体总数y 1 3 6 10 15 … 『师』:在这个问题中的变量有几个?分别师什么?
『生』:变量有两个,是层数与圆圈总数。
(2)在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式,其中V表示刹车前汽车的速度(单位:千米/时)
①计算当fenbie为50,60,100时,相应的滑行距离S是多少?
②给定一个V值,你能求出相应的S值吗?
解:略
议一议
『师』:在上面我们研究了三个问题。下面大家探讨一下,在这三个问题中的共同点是什么?不同点又是什么?
『生』:相同点是:这三个问题中都研究了两个变量。
不同点是:在第一个问题中,是以图象的形式表示两个变量之间的关系;第二个问题中是以表格的形式表示两个变量间的关系;第三个问题是以关系式来表示两个变量间的关系的。
『师』:通过对这三个问题的研究,明确“给定其中某一个变量的值,相应地就确定了另一个变量的值”这一共性。
函数的概念
在上面各例中,都有两个变量,给定其中某一各变量(自变量)的值,相应地就确定另一个变量(因变量)的值。
一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
三、随堂练习
书P152页 随堂练习1、2、3
四、本课小结
初步掌握函数的概念,能判断两个变量间的关系是否可看作函数。
在一个函数关系式中,能识别自变量与因变量,给定自变量的值,相应地会求出函数的值。
函数的三种表达式:
图象;(2)表格;(3)关系式。
五、探究活动
为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨元;超过10吨时,超过的部分按每吨元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,请用方程的知识来求有关x和y的关系式,并判断其中一个变量是否为另一个变量的函数?
(答案:Y=或)
六、课后作业
习题