首页 > 学习资料 > 教案大全 >

五年级数学课件【通用4篇】

网友发表时间 81385

【路引】由阿拉题库网美丽的网友为您整理分享的“五年级数学课件【通用4篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

五年级数学课件【第一篇】

教学目标

1.通过画、剪、观察、想象、分类、找对称轴等系列活动,使学生正确认识轴对称图形的意义及特征;

2.掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴

3.培养和发展学生的实验操作能力,发现美和创造美的能力。

教学重难点

会利用轴对称的知识画对称图形。

教学过程

一、复习引入:

(1)欣赏下面的图形,并找出各个图形的对称轴。

(2)学生相互交流,你们还见过哪些轴对称图形?

(3)轴对称图形的概念:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

(4)通过例题探究轴对称图形的性质:

例题1:

同学们用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,你能发现什么规律。

学生交流。

教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。

二、课内练习。

1.判断下面各图是否是轴对称图形,如果是,请指出它们的对称轴。

三、教学画对称图形。

例题2:

(1)引导学生思考:

A、怎样画?先画什么?再画什么?

B、每条线段都应该画多长?

(2)在研究的基础上,让学生用铅笔试画。

(3)通过课件演示画的全过程,帮助学生纠正不足。

板书

板书设计: 轴对称

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

五年级数学课件【第二篇】

教学目标:

1、掌握异分母分数加减法的计算方法,并能正确计算异分母分数的的加减法。

2、体会数学知识之间的内在联系。

教学方法:

小组合作交流法、主动探究法、讲授法。

教学重点:

异分母分数转化为同分母分数,正确计算异分母分数的加减法。

教学难点:

异分母分数先通分再加减的计算思路。即只有相同分母的分数之间才能直接相加减。

教学准备:

长方形白纸、课件。

教学过程:

一、出示情境图,提出问题。

他俩一共用着这张纸的几分之几?

两个人一起在同一张图片上画出自己所用的纸的大小。笑笑首先在纸上画出了这张纸的1/2,淘气继续画出这张纸的1/4。

二、启发思考

1、引导学生观察黑板上的算式,提问学生用我们以前学过的分数的加减法知识是否可以解出这个分数。学生回答道,不行的因为我们以前学过的是分母相同的分数的加减,这个分数的。分母一个是2一个是4不相同。

2、讨论具体的计算方法。

3、汇报讲解,同分母分数的分母相同,也就是分数单位相同。

4、进一步小结。只有分数单位相同的分数才可以直接想加减。

三、拓展思考

笑笑比淘气多用了这张纸的几分之几?

笑笑用了纸的1/2、淘气用了纸的1/4,所以根据题意笑笑比淘气多用了这张纸的几分之几应该用减法计算。

利用上面的方法继续解题。

四、小结

通分的实质就是讲分数单位不同的分数转化成分数单位相同的分数。

五、练一练

折纸

教学反思:

分母不相同的分数加减法:先观察相加减的两个分数的分数单位是否相同,如果不同先通分,将分母不同的分数转化成分母相同的分数,就可以相加减了。

最新五年级数学课件【第三篇】

教学目标:

1、能够认识长方体和正方体,具有初步的立体空间想象能力。

2、结合具体的多个长方体和正方体的堆放情景,经历探究多个长方体和正方体堆放时露在外面表面积的过程,能够准确的计算出多个长方体和正方体堆放时露在外面的表面积。

3、使学生感受到长方体和正方体的表面积与生活的密切联系,培养学习数学的良好兴趣。

重点难点:

能够准确的计算出多个长方体和正方体堆放时露在外面的表面积。

教学方法:

师生共同归纳和推理。

教学准备:

多个正方体盒子

教学过程:

一、复习导入

教师让学生顾回上一节课学习的长方体和正方体的表面积,并对学生进行提问。

学生回答:长方体的表面积=(长×宽+长×高+高×宽)×2;正方体的表面积=边长×边长×6)

二、讲授新课

教师出示课本插图1,让学生观察一个棱长是50厘米箱子放在墙角处时,有几个面露在外面,露在外面的面积是多少平方厘米?

学生观察图片并计算露在外面的面积是多少平方厘米?

教师提问学生回答这个问题。(露在外面的面有3个;露在外面的面积是50×50×3=750(平方厘米)。

教师出示插图2,让学生观察4个棱长为50厘米的正方体纸箱堆放在墙角处,有几个面露在外面?露在外面的面积是多少?

学生从正面、侧面、上面分别观察数一数露在外面的有几个面?并计算一下露在外面的面积是多少?

教师提问学生回答这个问题,(有9个面露在外面,露在外面的面积是50×50×9)

教师让学生用自己的4个正方体学具换一种堆放方式来试一试,露在外面的面积是否有变化,同桌之间相互讨论交流。

三、课堂小结

同学们,这一节课你学到了哪些知识?(提问学生回答)

板书设计:

露在外面的面

从正面、侧面、上面看一看,一共有几个面露在外面?

五年级数学课件【第四篇】

一、学习目标

(一)学习内容

《义务教育教科书数学》(人教版)五年级下册第10页的例2。例2是探究3的倍数特征,教材仍然采用百数表,让学生先圈数,再观察、思考。

(二)核心能力

在探究3的倍数特征的过程中,学会从不同角度去观察和思考,进一步积累观察、猜想、验证、归纳的思维活动经验。

(三)学习目标

1、借助百数表,经历探究3的倍数特征的过程,理解3的倍数的特征,能正确判断一个数是不是3的倍数,并解决生活中的实际问题。

2、在探究3的倍数特征的过程中,学会从不同角度去观察和思考,发展合情推理的能力,积累数学思维活动经验。

(四)学习重点

探索3的倍数的特征。

(五)学习难点

归纳举证3的倍数的特征

(六)配套资源

百数表、计算器

二、教学设计

(一)课前设计

(1)回忆我们研究过的倍数的特征是什么?并能给同学们解释是怎样探究出来的。

(2)自制一张百数表。

(二)课堂设计

1、复习引入

师:谁来给大家介绍一下,的倍数特征是什么?我们是怎样研究出来的?

学生自由发言,重点引导学生回忆知识形成的过程。

小结:我们是利用百数表,先找数,然后观察、猜想,最后进行验证和归纳,得出了倍数的特征。

师:这节课我们来研究“3的倍数的特征”。(板书课题)

设计意图:通过复习倍数的特征及探求的方法,唤醒学生的记忆,为探求3的倍数的特征做铺垫。

2、问题探究

(1)找3的倍数

师:研究“3的倍数的特征”,你们准备怎样研究?

生自由发言。

师:你们准备借助百数表,利用研究倍数特征的方法来研究3的倍数的特征,现在拿出你准备的百数表。同桌合作先找出3的倍数,然后观察圈出的数,看看有什么发现?

(2)全班交流、讨论

①发现问题

学生展示圈好的百数表。

师:说说你们的发现?

预设:只看个位不行。

师:为什么不行?

横着看:个位上的数0-9都有,竖着看:个位上的数也是0-9都有。

②分析问题

师:同学们发现,在百数表中(课件出示),横着、竖着观察3的倍数,只看个位上的数,没有规律可循。横着、竖着看,看不出规律,换个角度思考,我们还可以怎样看?只看个位不行,我们还可以看什么?

学生自由发言,引导学生斜着看。

师:大家认为除了横着、竖着看,我们还可以斜着看,现在请你斜着观察3的倍数,你又有什么新发现?

生独立观察、发现。

设计意图:因为3的倍数的特征比较隐蔽,根据探究倍数的特征的经验,学生发现不了规律。在学生实在没人看出规律时,教师再提示学生可以换一个角度去观察、去思考,接着重新去探索。

③解决问题

师:把你的发现和根据发现引发的猜想,在小组内交流一下,并想办法来验证你们的猜想。(可以用计算器)

小组合作交流后全班汇报。

(3)归纳3的倍数的特征

师:你们的发现和猜想是什么?

小组汇报,引导学生评价补充。

引导小结:斜着观察发现,每一行数的个位与十位的和分别是3、6、9、12、15,它们都是3的倍数,各个数位上的和是3的倍数,这个数也是3的倍数。

师:这个猜想对不对呢?你们是怎么验证这个猜想呢?

生汇报验证的过程。

师:举什么样的例子既简单又有代表性?

举的例子包含有两位数、三位数、四位数……,多举几个

师:有没有同学发现反例的,各个数位上的和是3的倍数,但是这个数却不是3的倍数。

师:通过验证,你们得出的3的倍数特征是什么,谁再来说一说?

归纳小结:一个数各个数位上的和是3的倍数,这个数就是3的倍数。

设计意图:经过引导,学生进行二次探索,发现、猜想、验证并归纳出3的倍数的特征,积累数学探究的活动经验。

3、巩固练习

(1)课本第11页“练习二的第3题”

圈出3的倍数。

92753620665305177999999

11149165598865513122227203

(2)课本第10页“做一做”

(3)小明拿了5个圆片,小军拿个6个圆片,用他们拿的圆片在数位表上摆数,谁拿的圆片摆出的数一定是3的倍数?谁拿的圆片摆出的数一定不是3的倍数?

请说明理由。

先独立完成,然后同桌合作操作验证。

4、全课总结

师:通过这节课的探究,我们获得了什么新知识?采用了什么样的研究方法?

在探究的过程中我们遇到了什么新问题?

小结:通过找数、观察、猜想、验证、归纳的研究方法,得出了3的倍数的特征。

师:为什么判断一个数是不是2或5的倍数,只要看个位数?而判断一个数是不是3的倍数,要看各位上数的和呢?请大家课下阅读第13页的“你知道吗”我们下节课进行交流。

相关推荐

热门文档

20 81385