首页 > 学习资料 > 教学反思 >

分数乘法教学反思精编4篇

网友发表时间 597931

【前言导读】此篇优秀教学范文“分数乘法教学反思精编4篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

分数乘法教学反思【第一篇】

《分数乘分数》的教学重点是巩固理解分数乘法的好处,探索分数乘分数的计算算理与法则。

在教学实践中继续采用“数形结合”的数学方法,帮忙学生达成以上两个教学目标。对于这天的“探究活动”没有直接放手,这是因为学生对“求一个数的几分之几是多少”的分数乘法好处的理解还不够深刻,因此在整个的教学过程分为三个层次:

一、引导学生透过用图形表示分数的好处,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法好处,感知分数乘分数的计算过程。

二、以1/5x1/4为例,让学生先解释算式的好处,然后用图形表示这个好处,最后再根据图形表示出算式的计算过程,这样做的目的是透过“以形论数”和“以数表形”的过程让学生巩固分数乘法的好处,体会分数乘分数的计算过程。

三、学生运用数形结合的方法独立完成教材中的“试一试”,进一步达成以上目标,并为总结分数乘分数的计算积累认知。能够说整体教学的效果还好。

透过这天的课,我对数形结合的思想有了更进一步的理解。由于分数乘法的好处和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得个性重要了。纵观教材,树形结合思想的渗透也有不同的层次,数形结合能帮忙学生从具体问题中抽象出数学问题;在本学期的分数乘分数中是利用直观的几何图形,帮忙学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮忙学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。

数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,在从直观变为抽象的一个过程,也就是要将“以形论数”和“以数表形”两个方面有机的结合起来。只有完整的让学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。

分数的乘法教学反思【第二篇】

本单元的教学,分数乘法解决问题是一个重点资料。既“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的好处的应用。它是分数应用题中最基本的。不仅仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的好处。在帮忙学生分析题意时,学生如果会画线段图,对于理解题意会有很大的帮忙。但可能是由于在五年级时,比较少要求学生画出线段图,根据线段图理解题意。因此当六年级明确要求要根据题意画出线段图时,学生刚开始时很不习惯,画出的线段图也不能很好的反应题意,对于这一方面,教学时需要再进行加强,因为这对于提高学生分析问题,解决问题的潜力将会有很大提高。而下一单元的教学如果学生能根据题意画出适宜的线段图,对正确解答问题将会有很大的帮忙。

此外,在教学中注重对单位“1”的理解,重点放在在应用题中找单位“1”的量以及怎样找的上面——先找出问题中的分率句再从分率句中找出单位“1”,为以后应用题教学作好辅垫。

具体做法:在教学中我抓住关键句,找到两个相比较的量,弄清哪个量是单位“1”,要求的量是单位“1”的几分之几后,再根据分数的好处解答。

在教学中,我强调以下几点:

(1)让学生用画图的方式强化理解一个分数的几分之几用乘法计算。

(2)强化分率与数量的'一一对应关系。并根据关键句说出数量关系。

(3)帮忙学生理解"一个数的几分之几"与"一个数占另一个数的几分之几"的不同。

对稍复杂的分数应用题,透过分析关键句与线段图,为后面的新授作铺垫,并提高学生分析题意、理解数量关系的潜力。透过沟通练习题与例题,利用学生解决稍复杂的应用题,并从中理解新旧应用题的不同结构。

教学中也显露出一些问题。主要存在于:

1、练习题与例题、在同一题的不同解法的多重比较中,比较得到的结论还需站在更高的角度去归纳,还应更深更全面的概括。

2、在学生表达解题思路时,不宜群众讲,更应注重学生个体表达,并且不必必须按照课本的固定模式,就应允许学生用自己的方式、用自己的语言来分析问题。这样才能及时发现问题,及时查漏补差。

3、对于学困生要加强怎样找单位“1”的训练,并加强根据关键句说出对应关系和数量关系的训练。

数学分数乘法教学反思【第三篇】

一、新课程理念更符合时代的要求,把课堂还给学生,让学生成为学习的主人。教师改变过去如何讲授结论,如何发现定理,公式,法则使学生理解,记忆,然后运用的教学方式,过去也教给学生如何学习的学习方法,但这只是教师的传授,学生接受的过程。这使得学生的学习是被动的,被老师牵着走,跟着老师学会,新的教学方式是要使学生会学。因此,课堂教学不再按预设有计划,有目的的进行,而是师生平等交流,互动的过程。教师要善于从学生已有的生活经验出发,创设学习的问题情境,让学生了解为什么要学,从而激起学生学习欲望。课堂上教师要引导学生发现问题,组织学生探索问题,在小组进行交流合作学习。在此过程中,教师是学生合作学习的合作伙伴。小组合作学习的目的是让学生自主探索,亲身经历体验知识的形成过程。

二、教学要善于创设教学情境。有意义的学习能诱发学生的内在动机,引发学生的积极思维,培养学生良好的学习态度,因此为了使学习变成有意义的学习,首先学习材料必须是有意义的,也就是使学生感到所学习的数学知识对生活实际和数迷的发展都是有用的,另外,学生的认知结构中要具有适当、可以与新知识进行相互联系和作用的知识,从另一角度来说就是新知识对学生来说是难度适当,新知识对学生既有智力的挑战,又使学生经过努力可以赢得挑战,新知识是学生的“最近发展区”。知识处于最近发展时,最能激发学生的学习动机。因此,创设有利于学生学习的教学情境是教学成功一半。

三、教学过程力求体现学生是学习的主体,教师只是教学活动的组织者,指导者,参与者,教师尽量引导学生思考,探索,相研究。学生通过在小组的合作交流的学习方式,大胆发表见解,从根本上改变学生被动学习的局面。在日常的教学中提倡自主学习、探究学习、合作交流等新颖的教学方式,学生的学习活动应当是一个生动活泼的主动的有个性的过程。

四。课堂教学评价具有促进学生发展和和教师专业成长的从重功能。首先,改变了教师教学的方式和学生学习的方式。以往的课堂教学中,教师大多是按照事先设计好的教学过程,带着学生一步不差地进行,学生则基本处于被动的地位,即使有一些自主的活动,也是在教师事先设计或限定的范围内,为某个教学环节服务。但如果关注学生的“学”,教师的这种教学方式就会受到挑战,而学生的学习方式也将发生根本性的变革,学生学习的自主性将被空前地重视起来。其次,改变了教师课前准备的关注点和备课的方式,“以学论教”使教师更多地关注学生在课堂上的可能反应,并思考相应的对策。于是,促使教师从以往“只见教材不见学生”的备课方式中转变出来,注重花时间去琢磨学生、琢磨活生生的课堂,注重提高自己的教学能力,而不是在课堂上简单地再现教材。再次,改变了教师支教学能力的认识。从关注“教”到关注“学”课堂教学评价重心的转移,将促使教师重新反思一堂“好”课要求教师具备的教学能力是什么。也许一个板书并不漂亮、口语表达并不是很利落的教师也能上出一堂好课来。因为“以学论教”课堂教学评价模式更为关注学生在课堂上做了些什么、说了些什么、想了些什么、学会些什么和感受到什么等等,教师的板书和口语表达能力已不再是一堂好课的必要条件了。只要这位教师给予学生充分自主学习、探究的机会,学生在课堂上获得了充分的发展,板书也许是学生来写,总结也许是学生来说,但这依然是一堂好课,一堂学生“学”得好的课。可见,教师需要对“教学能力”进行新的思考和认识:对教材的把握能力依然是必要的,但似乎已不够了,自主实践将会引发学生形形色色的问题,这就需要教师储备相关学科领域的知识,此外,更具挑战的是教师要学会“用教材”教,而不是“教教材”。

五、要致力于教学管理制度的重建。在转变观念和方式的同时,重建制度,这同样是本次教学改革的重要任务。教育思想观念的更新、教学与学习方式的转变需要相应的教学管理制度为其保驾护航。就学校教育内部而言,观念更方式转变的最大阻力来自落后的教学管理和评价制度。用应试教育的模式来管理和评价教师,怎么可能让教师生发出素质教育的思想观念和行为方式呢?对于本次课程和教学改革,教师反映最强烈的也就是教学管理和评价问题。他们盼望、呼吁与新课程、新教学相适应的新管理、新评价。教学管理制度的重建具有核心性的意义,它将从根本上解决教育观念和行为问题。当然,教学管理制度的重建不可能是一蹴而就的,它本身需要在改革过程中不断完善起来,也可以说,它与观念更新、行为转变是互动的过程,二者相辅相成,互相推进。

总之,课程改革需要建立一种以师生个性全面交往为基础的新型师生情感关系,为此,需要教师全身心的真情投入,需要在完善教学活动和完善个性两个方面共同努力。

分数乘法教学反思【第四篇】

“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的意义的应用。它是分数应用题中最基本的。不仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的意义。在教学中我抓住关键句,找到两个相比较的量,弄清哪个量是单位“1”,要求的量是单位“1”的几分之几后,再根据分数的意义解答。在教学中,我强调以下几点:

⑴让学生用画图的方式强化理解一个分数的几分之几用乘法计算。

⑵强化分率与数量的一一对应关系。并根据关键句说出数量关系。

⑶帮助学生理解"一个数的几分之几"与"一个数占另一个数"的几分之几的不同。

对稍复杂的分数应用题,通过分析关键句与线段图,为后面的新授作铺垫,并提高学生分析题意、理解数量关系的能力。通过沟通练习题与例题,利用学生解决稍复杂的'应用题,并从中理解新旧应用题的不同结构。

教学中也显露出一些问题。主要存在于:

1、练习题与例题、在同一题的不同解法的多重比较中,比较得到的结论还需站在更高的角度去归纳,还应更深更全面的概括。

2、在学生表达解题思路时,不宜集体讲,更应注重学生个体表达,并且不必一定按照课本的固定模式,应该允许学生用自己的方式、用自己的语言来分析问题。这样才能及时发现问题,及时查漏补差。

3对于学困生要加强怎样找单位“1”的训练,并加强根据关键句说出对应关系。

相关推荐

热门文档

21 597931