首页 > 学习资料 > 教学反思 >

数学合并同类项教学反思5篇

网友发表时间 905585

【导言】此例“数学合并同类项教学反思5篇”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

《合并同类项》教案1

[教学目标]知识目标:使学生了解同类项的概念,能识别同类项,学会合并同类项并知道合并同类项所依据的运算律.

能力目标:培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想.情感目标:借助情感因素,营造亲切和谐活泼的课堂气氛,激励全体学生积极参与教学活动.培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神.

[教学重点]同类项的概念和合并同类项的法则及求代数式的值。[教学难点]学会合并同类项.

[教学方法]引导、启发、探求。[教学过程]

一、复习回顾

1.同类项:所含字母相同,并且相同字母的指数也相同的项。几个常数也是同类项。

2.同类项有两个特征(1)所含字母相同;(2)相同字母的指数分别相同;(两者缺一不可)3.同类项与他们的系数大小无关;4.同类项与它们所含相同字母的顺序无关;

5、判断下列说法是否正确。(1)、3x与3mx是同类项。(2)、2ab与-5ab是同类项。(3)、3x2与1?3yx2是同类项。(4)、5ab2与2ab2c是同类项。(5)、23与32是同类项。

二、创设情境,引入课题

问题:为了搞好班会活动,班长和生活委员去购买一些水笔和软抄本作为奖品,他们首先购买了15本软抄本和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软抄本和5支水笔。问:

1、他们两次共买了多少本软抄本和多少支水笔?

答案:21本软抄本,25支水笔2、如果软抄本的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元?答案:15x+20y+6x+5y=21x+5y提问合并同类项概念:把多项式中的同类项合并成一项。

设计意图:用此方式,充分调动了学生积极参与,激发了学生求知欲望创设问题情境,选择新旧知识的切入点,通过启发提问,构造问题悬念,激发学生兴趣,并自然引出课题.

二、实践思考探索交流

1、找出多项式3x2y-4xy2-3+5x2y+2xy2+5中的同类项,并合并同类项。

问题1:同类项有哪些?同类项怎么合并?

①-3+5=________;② 3x2y+5x2y=__________=______

其理由是____________;③-4xy2 +2xy2=____________=_______

其理由是____________.问题2:在一个多项式中,不在一起的同类项能否将同类项结合在一起?为什么?

答:可以,理由是运用加法交换律与结合律将同类项结合在一起,原多项式不变。

解:3x2y-4xy2-3+5x2y+2xy2+5

=3x2y+5x2y-4xy2+2xy2+5-3

加法交换律

=(3x2y+5x2y)+(-4xy2+2xy2)+(5-3)

统一加法的形式

=(3+5)x2y+(-4+2)xy2

+(5-3)

乘法分配律的逆运算

=8x2y-2xy2+2

合并问题4:根据上面合并同类项的例子,你能归纳合并同类项的法则吗?

合并同类项法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变。注意:(1)、合并的前提是有同类项。(2)、合并指的是系数相加,”相加”指的是代数和。(3)、合并同类项的根据是加法交换律、结合律以及乘法分配律。

设计意图:利用问题形式提示学生上面是利用了乘法的分配律逆运算(学生分组讨论.)例

2、合并下列多项式中的同类项。(1)a3-a2b+ab2+a2b-ab2+b3(2)6a2-5b2+2ab+5b2-6a2学生思考:合并同类项的步骤是怎样?

1、准确地找出同类项。

2、利用合并同类项的法则合并同类项。3写出合并后的结果。

解:

(1)、a3-a2b+ab2+a2b-ab2+b3

找出同类项

=a3+(-a2b+a2b)+(ab2-ab2)+b3把同类项结合

=a3+(-1+1)a2b +(1-1)ab2+b3

把同类项合并

=a3+b3

若该项没有同类项怎么办?照抄下来

(2)6a2-5b2+2ab+5b2-6a2

=6a2-6a2-5b2+5b2 +2ab

=(6a2-6a2)+(-5b2+5b2)+2ab

=2ab

方法是:(1)系数:各项系数相加作为新的系数。(2)字母以及字母的指数不变。

强调学生注意:

(1)、用画线的方法标出各多项式中的同类项,以减少运算的错误。

(2)、移项时要带着原来的符号一起移动。

(3)、两个同类项的系数互为相反数时,合并同类项,结果为零。

(4)、①、合并同类项时,只能把同类项合并为一项,不是同类项的不能合并,不能合并的项,在每一步运算中都要写上;②、同类项移动位置时,不要漏掉它的性质符号,特别注意“-”。

3、求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3。

方法1解:当x=-3时

原式=3×(-3)2+4×(-3)-2×(-3)2-(-3)+(-3)2-3×(-3)-1

=3×9-12-2×9+3+9+9-1

=27-12-18+3+9+9-1 =17

方法2解:3x2+4x-2x2-x+x2-3x-1

=3x2-2x2+x2+4x-x-3x-1

=(3-2+1)x2+(4-1-3)x-1

=2x2-1

当时x=-3时,原式=2×(-3)2-1 =17

提问学生:通过求值你发现了什么?怎样更简捷的求值呢?

答:求多项式的值,常常先合并同类项,再求值,这样比较方便。

设计意图:使学生知道在此题形中先化简,再求值比较方便,帮助学生提高解题速度。

三、概括提升(课堂练习)。

1、如果两个同类项的系统互为相反数,那么合并同类项后,结果。比如-5a2b+5a2b=.2、先标出下列各多项式的同类项,再合并同类项。

(1)、3x-2x2+5+3x2-2x-5

(2)、a3+a2b+ab2-a2b-ab2-b3解答:略

设计意图:帮助学生巩固本节课所学的内容,同时也可提高学生计算能力。

四、本节你学到了什么?

合并同类项:我们把多项式中的同类项合并成一项。

合并同类项法则:(1)、把同类项的系数相加,所得的结果作为系数;(2)字母和字母的指数保持不变。(3)、求代数式的值时,先化解,再代入比较简便。

设计意图:帮助学生总结和巩固本节课所学的内容。

五、作业:P66第1题和第2题。

设计意图:帮助学生巩固本节课所学的内容

.合并同类项教学反思

通过练习,使学生熟悉并掌握同类项概念和合并同类项法则。整个教学过程来说,学生反映较好,但是课下我自己的反思,发现自己有很多地方需要注意和改进。

1、板书设计很重要,这能体现教师的讲课内容的重点,难点。而我的板书在这方面需要改进。

2、提出的问题还没有到位。在教学过程总,曾出现学生不知老师所提出问题的意图,我的语言表达不是很准确,不是很到位,这是我今后在教学方面应该加强注意和练习。

3、同类项的概念要让学生着重理解到会灵活运用。

4、探究过程是一个十分重要的过程。这时老师应该特别注意学生的反应。

5、不仅内容要传授准确,而且要强调学生做题的规范性,使学生养成良好的学习习惯。

6、在学生学习活动环节,老师应关注学生探究化简方法是否能积极思考,主动参与;是否能说出化简方法的理论依据,学生对同类项定义的理解和掌握情况对合并同类项法则的总结情况。

7、结合学校特点,发挥优势,数学科课堂教学模式还要更加深入地探索、研究,逐步形成自我教学特色。

8、在授课前要想办法,用生动有趣的图案和实物来代替抽象的理论知识,来调动学生的学习积极性,用精彩的问题设置吸引学生,用数学实验和游戏吸引学生,用生动有趣的语言、事例吸引学生。

另外,我对本节课的重点内容的把握不是很好。对学生的接受新知识的能力有所高估。在今后的教学中,应需要钻研教材,了解学生的基本情况。新知识的接受需要一个过程,突出学生主体地位,让学生在课堂上的思考、讨论、总结这也需要一个过程,培养学生的良好的学习习惯。

总之,应用教材,如何引导学生去学成为关键。这就要求我们的课堂教学模式有所改进,充分考虑学生的好奇心和荣誉感,鼓励学生多讨论多参与,让学生有机会讲述自己的见解,我们要有“度”的进行课堂管理。不仅要注重培养学生的学习兴趣,更要尊重学生的学习兴趣,不能扼杀学生的学习热情,让学生在打好学习基础的同时,又培养了自身的能力,发展了自身的特长。

夫参署者,集众思,广忠益也。以上5篇数学合并同类项教学反思就是山草香小编为您分享的合并同类项的范文模板,感谢您的查阅。

《合并同类项》教案2

学习方式:

从具体问题情景中探索体会合并同类项的含义。

逆用乘法分配律探求合并同类项法则。

通过多角度的练习辨别同类项,加 深对概念的理解,培养思维的严密性。

教学目标:

1、在具体情境中理解、掌握同类项的定义;

2、在具体情境中, 让学生了解合并同类项的法则,能进行同类项的合并。

3、能运用合并同类项化简多项式,并根据所给字母的值,求多项式的值。

4、通过“合并同类项”的学习,继续培养学生的运算能力。

教学的重点、难点和疑点

1、重点:同类项的概念,合并同类项的法则。

2、难点:理解同类项的概念中所含字母相同,且相同字母的次数也相同的含义。

3、疑点:同类项与同次项的区别。

教具准备

投影仪(电脑)、自制胶片

教学过程:

提出问题

创设情景 (出示投影)

如图的长方形由两个小长方形组成,求这个长方形的面积。

①当学生列出代数式 8n+5n时,可引导学生是否还有其他表示方法,启发学生得出:

(8+5)n

②接着引导学生写出等式:

8n+5n=(8+5)n=13n

启发学生观察上式是怎样的一种变化;

它类似于我们前面学过的什么运算律

为什么8n与5n可以合并成一项(组织学生充分

讨论,从而引出同类项的概念)

③同类项的概念

举出一些具有代表性的同类项的实际例子。

如:-7a2b , 2a2b ;

8n , 5n ;

3x2, -x2

引导学生观察上面给出的几组代数式具有什么共同特点:

①所含的字母相同

②相同字母的指数也相同

教师顺势提出同类项的概念

强调同类项必须满足以上两条

④结合长方形面积问题,引出合并同类项的概念:把同类项合并成一项就叫做合并同类项。 学生观察,思考

讨论交流

(反例巩固) 出示问题;

x与y,

a2b与ab2,

-3pa与3pa

abc与ac,

a2和a3 是不是同类项

(给学生留下足够的思考时间,引导学生紧紧结合同类项的两个条件进行判断)

其中:a2b与ab2可让学生充分讨论交流。

(教师强调“必须是相同字母的指数相同”这句话的含义,从而分清同类项与同次项的区别)

(引导学生题后反思,同类项与它们的系数无关,只与所含的字母及字母的指数有关)。

紧扣定义

加以判别

例1 根据乘法分配律合并同类项

(1)-xy2+3xy2 (2) 7a+3 a2+2a- a2+3

(教师强调乘法分配律的逆运用)

(学生板书完毕后,教师引导学生观察合并的前后发生了什么变化?其中系 数怎样变化的?字母及字母的指数又怎样变化了)

由此引导学生总结出合并同类项的法则:

在合并同类项时,只把同类项的系数相加减,字母和字母的指数不变。

学生思考

解答(找二生板演其他学生独立写出过程)

总结法则

可根据情况适当复习关于乘法分配律的有关知识

通过上面的实例,学生对怎样合并同类项的问题已有较深刻的印象,但还不能用完整的数学语言将其叙述出来,教师要积极引导,让学生动脑思考。

应用法则

例2,合 并同类项

①3a+2b-5a-b

②-4ab+8-2b2-9ab-8

给学生留有足够的独立的思考时间

找二生到黑板上板演。

学生 板演后,教师组织 学生交流评价,根据出现的问题,作点拔,强调。

强调:合并同类项的过程实质上就是同类项的系数相加减的过程,在系数相加时,不要遗漏符号,字母和字母的指数都不变。

教师不给任何提示

学生在练习本上完成,然后同桌同学互相交换评判。

(二生到黑板上板演)

变式

应用 补充例题

例3,求代数式的值

①2x2-5x+x2+4x-3 x2-2 其中x=

②-3 x2+5x- x2+x-1 其中x=2

出示 例题后,教师不要给任何提示,先让学生独立思考。

部分学生会直接把x= 代入式中去计算,出现这一情况后,教师可积极引导。

问:还有没有其 他方法?学生仔细观察后不难发现先合并化简后,再代入求值,此时教师可提出让学生对比分析哪种方法简便。从而强调,先化简再求值会使运算变得简便。

独立完成

分析比较

寻求简便方法

随堂

练习 1、合并同类项

①3y+ y=__________

②3b-3a2+1+a3-2b=____ _______

③2y+6y+2xy-5=_____________

2、求代数式的值

8 p2-7q+6q-7p2-7

其中p=3 q=3

练习交流合作

教师可根据情况适当补充

小结今天你学会了哪些知识?获得了哪些方法,

有什么体会? 自己总结

作业教材课后习题

数学合并同类项教学反思3

这节课是在学生学习有理数乘方的基础上展开的。这节课的重点是学生能说出幂的乘方的运算性质,并用符号表示。难点在于利用同底数幂的乘法的运算性质进行运算。为了吸引学生的学习,我主要通过计算(23)2,(a4)3,(am)5的引入。让学生经历从特殊到一般的过程,让学生归纳出幂的乘方的运算性质。在这个过程中,培养了学生的自主学习,让学生充分交流各自的计算依据,发展学生的归纳能力和有条理的表达能力。对于公式的记忆,怕有些同学记不住。因此,我把底数比作是同学的脚底板,指数是学生的手指,同底数幂的乘法比作同学手牵手。将课知识形象化,有利于学生掌握新知识,更好的提高课堂效率。

但是在课堂练习中,学生做题时候出现了很多错误,例如

1.负数的奇次方与偶次方的符号的混淆,

(-2a2)2= -4a4,(-2a2)3=8a6(奇负偶正法)

2.乘方运算的错误,如32=32=6

学生分不清各种运算性质是错误的关键,没有什么好的方法,只能多练,这是一个熟悉的过程。培养学生把解题后的再构应用到整个数学学习过程中,养成检验、反思的习惯,是提高学习效果、培养能力的行之有效的方法。因此,在不增加学生负担的前提下,要求的作业是每节课后必须进行再构,利用作业的再构给老师提出问题,结合作业做一些合适的反思,对学生来说是培养思维能力的一项有效的活动。

数学积的乘方教学反思范文5

本节课的主要内容是积的乘方公式及其应用。从实际问题猜想——主动推导探究——理解公式——应用公式——公式拓展,整堂课体现以学生为本的思想。实际问题情境的设置,在于让学生感受到研究新问题的必要性,由于在应用当中需要用到同底数幂的乘法和幂的乘方,也是为了引导学生回忆巩固前面的知识,所以在上新课之前先复习它们的法则。积的乘方公式的理解及应用时这节课的重点,首先要让学生理解这个公式,而要让学生理解这个公式,就要让学生理解积的乘方的含义。导出性质后,要通过一些实例说明其表达式及语言叙述中每句话的含义,以期学生更好的理解,并能在理解的基础上会用它进行计算。因此在后面设计了几个例题,以便学生进一步理解公式。总的来说这节课还是讲解清楚了积的乘方的概念,并且也给了一定的时间给学生训练,学生初步掌握了概念并能对它进行简单的应用。这节课的主要易错点是对符号的处理,这点在备课的时候我也考虑到了,因此在例题里我设计了一些学生易错的题让他们训练。

本节课存在的问题:1,、法则理解不到位。2、积的因式模糊不清。3、符号应该视为因式的一部分。在今后的教学中要注意以下的几点:第一、不能把学生看得很聪明,该下细的地方就要反复讲解。第二、对难点问题要析出几条线、不同角度加以说明。第三、多让学生之间讨论交流,让学生自己去体会总结。

《合并同类项》教学设计4

一、教学目标:

1、使学生理解多项式中同类项的概念,会识别同类项。

2、使学生掌握合并同类项法则,能进行同类项的合并。

3、通过观察、比较交流了解教学的分类思想,并能准确判断出同类项。并熟练运用法则进行合并同类项的运算。

4、激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。

二、教学重难点:

重点:同类项的概念、合并同类项的法则及应用。

难点:正确判断同类项;准确合并同类项。

三、教学方法:

引导、探究式教学、合作、交流、观察、练习、

四、教学过程:

(一)情景导入:

1、作为农村学生,我们都知道自己家的菜园里会把西红柿、黄瓜、茄子、葱分别栽培在一起,为何不把它们交叉种植呢?

再如,在小学时,老师会让我们把水果和非水果进行分类,生活中处处有分类问题,在教学中我们也会遇到一种分类问题,今天我们就共同来学习。

根据下列单项式的特征试将其分类:

8n、 -7ab、3ab、2ab、6xy、5n、-3xy、-ab、

2、形成概念:

以上式子归为同类需要有什么共同的特征?(引导学生看书,让学生理解同类项的定义)

概念:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

注意:(1)同类项与系数无关,与字母的排列顺序也无关

(2)几个常数项也是同类项。

(二)强化练习:

1、思考:下列各组中的两项是不是同类项?为什么?

(1)ab与3ab; (2)2a b与2ab ;(3)3xy与- xy;

(4)2a与2ab (5)-与 ; (6)5与b ;

2、请同学们思考下面的问题?

3ab+5ab=_______理由是________

-4xy2+2xy2=_______ 理由是_______

-3a+2b= 理由是_______

3、不在一起的同类项能否将同类项结合在一起?为什么?

例如:试化简多项式3x y-4xy -3+5x y+2xy +5

解:3x y-4xy -3+5x y+2xy +5--------------找出

(用不同的标志把同类项标出来!)

=3x y+5x y-4xy +2xy -3+5 ----------加法交换律

=(3x y+5x y)+(-4xy +2xy )+(-3+5)--加法结合律

=(3+5)x y+(-4+2)xy +2 ---------乘法分配律逆用

=8 x y-2 xy +2 ----------合并

探讨:

合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系?

(三)例题讲解

例:合并下列各式中的同类项:

1).2a b-3a b+ a b 2).2a b+2ab +a b-ab

3).6a -5b +2ab+b -6a

解:1).2a b-3a b+ a b=(2-3+ )a b=- a b

方法是:(1)系数:各项系数相加作为新的系数。

(2)字母以及字母的指数不变。

2).-2a b+2ab +a b-ab --------------找出

=-2a b+a b+2ab -ab ----------加法交换律

=(-2a b+a b)+(2ab -ab)--加法结合律

=(-2+1)a b +(2-1)ab ---------乘法分配律逆用

= -a b+ ab ----------合并

3).6a -5b +2ab+b -6a

=(6a -6a )+(-5b +b )+2ab-------没有同类项照抄下来

=-4 b +2ab

思考:合并同类项的步骤是怎样?

(四)巩固练习

1、尝试训练:(1)3x +x ; (2)xy - xy ;

(3)4a+3b+2ab-4a-4b

2、请你完成:

(1) 3x-8x-9x (2) 5a2+2ab-4a2-4ab

(3) 2x-7y-5x+11y-1

3、知识延伸:

已知 与 是同类项,求的值。

4.如果2abn+1与-4amb是同类项,则m=____,n=____;

5.若5xy+axy=-2xy,则a=___;

6.在6xy-3x-4xy-5yx+x中没有同类项的项是______

(五)课堂小结:

谈一谈:通过这节课的学习你学到了什么?

相同字母的指数一样

所含字母一样

②交换律

③结合律

④分配律

①找出

A.系数相加减;

B.字母和字母的指数不变。

⑤合并:

合并

法则

要点

(六)布置作业

1、在下列代数式中,指出哪些是同类项。

2x2 ,0 ,-3x ,-x2y ,(x+y)2 ,xy2, x2y ,6x ,

-x2y , , -x2 ,2(x+y)2 ;

2、合并同类项

①3y+2y ②3b-3a3+1+a3-2b

③2y+6y+2xy-5 ④6mn+4m2n-3mn+5mn2

3、填空:

(1)在( )内填上相应字母,使得2( )3( )2与5x2y3是同类项;

(2)若x3ym和xny2是同类项,则 = ;

(3)若(n-3)x2yz和x2yz是同类项,则 ;

数学合并同类项教学反思5

人教版四年级数学上册《角的分类》教学反思关于“角”,学生在二年级已有初步的接触,但是大都属于直观的描述,现在是在二年级的基础上恰当抽象出图形的特征,系统学习角的概念、角的度量、角的分类和角的画法等等。角的分类是在学生已初步认识角,会用量角器量角的基础上进一步认识平角、周角,根据角的度数分类,区分直角、平角、锐角、钝角和周角。 学生在日常生活中接触了很多的大小不同的角,但对常见的角的分类的知识,生活中接触很少,显得比较抽象。

小学四年级的学生抽象思维虽然有一定的发展,但依然形象具体思维为主,分析、综合、归纳、概括能力较弱,有待进一步培养。而数学来源于生活,我们的日常生活就是学习数学的大课堂,是探索问题的广阔天地,把所学的知识运用到生活实践中,是数学学习的最终目的。因此,我从生活实际出发,让学生 自己捕捉生活素材,然后从生活经验和已有知识背景出发,使他们获得主动探究数学快乐的快乐。

我根据学生们已有的钟表的认识,首先让学生看钟说出在几时整,时针和分针成90度的角?在几时整,时针和分针成180度的角?学生很快得出3时或9时成90度,6时整成180度。然后我让学生说出2时整,时针和分针成多少度角?当时有少数几个同学说出来了,并且说出了不同的想法。有个同学说3点整,时针和分针成90度,而3点时,分针走了3格,即3格是90度,那么1格就是30度,因此2时整的时候,时针和分针成60度的角;还有个同学说时针从12点再走到12点,走了360度,而钟面上有12格,因此每一格就是30度,所以2时整的时候,时针和分针成60度角。接下来我又问9∶30时成多少度角?结果好多同学上当了,都以为是形成了直角,最后全班只有一个同学答对了,他的小结让许多同学顿悟,原来,时针与分针都是在运动的,只是时针走得慢,分针走得快而已。在探究活动中,同学们形成了初步的信息收集能力、分析能力,并切身体会到自己探究成果的乐趣,可以更好地激发学生探究大千世界的欲望。

在本课的结束部分,我与学生一起寻找生活中的角,将课本的知识有效地进行了延伸。总之,关于角的分类的知识,我让学生在主体积极参与、操作、交流、动脑、动口的探究性学习中建立概念、理解概念和应用概念。实践证明:学生学习方式的转变,能激发学生的学习兴趣,让课堂焕发师生生命的活力,让课堂更精彩。

相关推荐

热门文档

21 905585