圆的面积教学反思通用4篇
【导言】此例“圆的面积教学反思通用4篇”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
圆的面积教学反思【第一篇】
学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成圆环的本质问题。
根据以前的经验,也总是通过实例,也就是实际操作,让学生感受到圆环的面积该如何求,但是总有一部分学生不明白为什么要用大圆的面积减去小圆的面积。
总有疑问,如何改进呢?看似简单的问题,有人却总不明白,主要问题还是不明白圆环的概念,另外教学进度过快,也是其中原因之一,过高的估计了学生的理解能力,总是认为这类问题很简单不需要有过多的解释,倒致后来无论如何补进,学生总是不会,学生的第一印象特别深刻,不容易忘记,与其后来的反复强调,不如现在改进,因些,我想这样做,首先是一明确概念。
概念的理解,是呈阶梯状,分层次来理解,首先是初步感知生活的圆环,用课件出示,轮胎,光盘,胶带等,使学生有了初步的印象,第二步画圆环,通过观察或量一量圆环,你有什么发现?此时的学生已有了深度的理解,在些基础上,剪圆环,并出示一些同心圆和不是同心圆的图片,来让学生分辨,明白圆环是同心圆。
第三步则是认识各部分的名称,既大半径和小半径,环宽,并通过练习来巩固认识,练习一些找大圆直径或小圆直径的,半径的等练习,经过上面的一系列的缓慢过程,有实际操作也有课件濱示,还有练习,非常的形象和直观,吸引了学生的注意力,激发了学生学习的兴趣。也为下面的从而为下面求环形的面积作铺垫,而后是求圆环的面积,自然而然,学生肯定也明白了怎样求圆环的面积。
学生在知识的学习过程中,应有亲身体验,获得“做出来”的数学,而不是给以“现成的”数学。有了亲身的体会,学生很容易求出圆环的面积,但是为提高课堂效率,仅此一点往往是达不到预期的效果,接下来我打破常规,不是在理解的基础上,出示练习题目,进行单纯的练习,这样做学生也会感到枯燥无味,于是我随机提出问题让学生思考,”知道了圆环的面积如何求,如果给出了两个半径可以很简单的求出圆环的面积。
但在实际生活是不是只会给出半径,求环形的面积?如果不是,还可能会出现什么?怎样解决这一问题?”要求小组合作,讨论解决,经过这一过程,学生展示出现了各种类型,事实证明让学生尝试计算,分析验证,比较计算学生正确,并应用大半径、小半径、“环宽”之间的关系练习设计了4道对比练习题,使学生在练习中学会处理大半径、小半径、“环宽”的关系。
通过以上的各个环节,本节的课容量大,既有基础又有拓展,学生的积极性也极高,全体参与,使每个人都有不同程度的发展。
圆的面积教学反思【第二篇】
圆的面积是人教版六年级数学教学的重要内容,在学习圆的周长时,学生已经有了“化曲为直”的初步思想与体验。虽然学生对极限思想理解不够具体。但不管曲线化直线是否够直,其实并不影响近似长方形的长与圆周长的关系。理解了这点,学生通过“剪拼议”在老师引导和学生引导下,能够接受长方形长等于圆周长一半,宽等于圆的半径,长方形面积等于长乘宽,所以,圆的面积等于π乘半径的平方。
虽然解决了教学重难点,完成了教学目标。但从一个例题,学生仅仅了解了转化思想。但远远达不到对转化思想的理解运用。如何利用好课本知识,学习致用。在备课时,我刻意增加了把圆拼成近似三角形,近似梯形,课堂上,在把圆拼成近似长方形,推导出圆面积公式,完成教学任务后,我提出既然可以运用转化思想,化曲为直。把没学过的知识点转化成学过的知识点,利用已有知识解决。那么我们能不能转化成其他已学过的图形呢?学生气氛活跃,经过拼图,很快拼成了近似三角形,近似梯形。但剪拼以后,应该怎么办?学生普遍陷入困惑,没有思路。这时,我注意开始启发学生。我们转化图形以后,怎样建立新旧图形之间的联系,需要从基本条件开始,那么,需要怎么找新旧图形之间的联系,从哪些条件着手。学生受到启发,很快从底,高,与三角形的联系推导出了圆面积公式。不仅如此,学生还趁热打铁,从长度,长,宽,高,周长,到面积推导出了各个量之间的联系。学生兴奋地说,知道了以后转化图形以后,怎么找条件之间的联系了,也知道找的顺序,从长度到面积,从面积到体积。新旧图形之间的联系应该是方方面面的,
一节课,用心探究,用心准备,不但能解决知识目标,更能拓展学生能力。从鱼到渔,条条大路通罗马,全面提高学生数学素养与探究能力。
圆的面积教学反思【第三篇】
《圆》的教学是小学数学教学的重要组成部分,而圆的面积又是其教学中的重点和难点,它是后面要学习的圆柱和圆锥的基础,其重要性不言而喻。学习本节内容的知识基础是圆的认识以及长方形、平行四边形、三角形、梯形等平面图形面积的推导过程。转化的数学思想是学习本节内容的策略和学习手段。
在学习“圆的面积”公式推导时,我让学生先说说以前学过的平面图形面积推导的过程与方法,进一步渗透“转化”的教学思想,让学生猜想:圆也是平面图形,能不能用转化法,把它转化成以前学过的图形推导出来呢?然后让学生看书,引导动手操作:先把圆平均分成2个半圆,把每个半圆平均分成若干份,展开,交错拼在一起,观察拼成了什么图形?(近似的长方形。)课件演示:再把半圆分成更多等份拼在一起。学生发现:分的份数越多,拼在一起就越像长方形。然后学生观察思考:通过这样拼,什么变了?什么没变?拼成后长方形和原来的圆有什么关系?
学生明确了:它们的面积相等,长方形的长=圆周长的一半,宽=圆半径,进而推导出圆的面积计算公式。通过这样的剪、拼、验证,把圆转化成已学过的平面图形(长方形),从而推导出了圆的面积计算公式。通过这一学习过程,学生不仅获取了新知,更提高了学习能力。
圆的面积教学反思【第四篇】
在教学过程的伊始就用这个生活中的数学问题来导入新课的学习,既可以激起学生学习的兴趣,又可以为后面圆面积的学习奠定基础,更可以让学生从课堂上涉猎生活中的数学问题,让学生体验到数学来源于生活。从学生熟悉的数方格开始学习圆面积的计算,有利于学生从整体上把握平面图形面积计算的学习,有利于充分激活学生已有的关于平面图形面积计算的知识和经验,从而为进一步探索圆的面积公式作好准备。由数方格获得的初步结论对接下来的转化推导相互印证,使学生充分感受圆面积公式推导过程的合理性。
让学生通过课前剪拼,把圆转化为长方形,并在课堂展示,通过这一环节,渗透一种重要的数学思想——转化,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧的知识解决新的问题,从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我们可以很容易发现它的计算方法了。让学生迅速回忆,调动原有的知识,为新知识的“再创造”做好知识的准备。学生展开想象的翅膀,从而得出等分的份数愈多,拼成的图形就越像平行四边形。
在想象的过程中蕴含了另一个重要数学思想的渗透——极限思想。在教师的引导下,使学生通过自己主动的观察、思考、交流。运用已有的经验去探索新知,把圆转化成已学过的长方形来推导出圆面积的计算公式。通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和演算推理能力,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。全课总结不仅要重视学习结果的回顾再现,也要关注学习经验的反思提升。在这一过程中,学生不仅获得了知识,更重要的是学到了科学探究的方法。