首页 > 学习资料 > 教学反思 >

数学《真分数和假分数》教学反思精编4篇

网友发表时间 513546

【路引】由阿拉题库网美丽的网友为您整理分享的“数学《真分数和假分数》教学反思精编4篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

真分数和假分数教学反思1

昨天,市教研室来我校调研,有幸请张平老师指点了一节数学课:《真分数和假分数》。听了张平老师的点评,有如下启示:

学生在前一阶段所认识的分数都是分子比分母小的分数,而且这些分数表示的都是一个数量中的一部分和这个数量的关系。本节课上,学生需要认识分子与分母相等及分子比分母大的分数,以及真分数和假分数的概念。教材上的例2是利用学生对分数意义和分数单位的已有认识,通过涂色,先后引出对4∕4和5∕4的认识。教学时,我按照教材的编写意图,按部就班的引导学生认识。出示了分数“5∕4”后,我问学生:“这里把什么看作了单位‘1’?”学生一致认为是“把两个圆看作单位‘1’”。其实,这样的'回答是我在设计教学时就已经预料到的,于是我开始引导:如果是把两个圆看作单位“1”,一共平均分成了几份?取了几份?用分数表示是多少?5/8和5∕4一样吗?再想想应该把什么看作单位“1”?学生:“两个圆!”尽管前面有例题的明示“把一个圆看作单位‘1’”,尽管我作了引导,可学生还是坚持他们的想法。无奈,我只得重新再引导一遍。

课后,张平老师的方法给了我启发:在让学生涂色表示5/4时,先只出示一个圆让学生说单位“1”、涂色,学生肯定会说不够,由此再出示第二个圆,即再出示一个单位“1”,合起来是两个单位“1”,两个圆是两个单位“1”,而不是一个单位“1”。有了这样的铺垫引导,学生就有了深刻的理解。

另外,张平老师还提到一节课练习的设计要设计好,要注意层次等。听了张平老师的点评及建议,我深深体会到,每节课前,都要认真钻研教材,要精心设计好每一个教学细节,正所谓:细节决定成败。在一定程度上,课堂是由无数个细节组成的。细节是一种长期潜心的准备,细节是可以挖掘、预设的,我们教师要善于把握课堂教学中的每一个细节,从小事入手,以小见大,进而创造出有效、精彩的课堂。

读书破万卷下笔如有神,以上就是差异网为大家整理的4篇《数学《真分数和假分数》教学反思》,希望对您有一些参考价值。

数学下册《真分数和假分数》教学反思2

课前预习,所有学生都能根据真、假分数的概念及其特点对分数正确进行分类。但请学生用假分数表示图中的涂色部分或在数据上表示带分数则比较困难。

针对这一现状,我对例2的教案进行了改动。在教具方面,原先准备用挂图教学,但考虑到挂图一次性呈现所有图案,不便于学生感受到一个圆是单位“1”,最后改为用自制圆片作教具逐一展示。在教学设计方面,原先准备一开始就完全放手,让学生独立尝试用分数表示图中的涂色部分。现在,学生是在我的引导下,逐步完成三个假分数的学习。特别是第二幅图,针对学生的困惑“为什么这幅图不能用7/8来表示”质疑,使其明确单位“1”,并且掌握假分数7/4的含义。从第三幅图学生独立完成情况来看,这样的改动是成功的。

做一做第2题也是练习中的难点,需要老师辅导学生完成。在这里,我是这样指导的:我们把从0到1的线段长度看作单位“1”,请大家仔细观察把单位“1”平均分成了几份?

请大家把1/6、6/6、7/6、13/6在直线上表示出来。

指名板书,集体订正时问“为什么13/6在直线的这个点?”1/3表示什么意思?如果把单位“1”平均分成3份,1份是多长呢?你是怎样知道的?

请同学们将1/3、3/3、5/3在直线上表示出来。

为什么3/3和6/6在同一个点上?

问:请大家观察表示真分数的点和表示假分数的点分别在直线的哪一段上?

师:我们将分数与1进行比较共分为两类。一类是真分数,真分数都小于1。另一类是假分数,假分数等于1或者大于1。

这样分层练习,由易(分母是6的分数)到难(分母是3的分数),最后通过观察对比,对分数进行分类,形成正确的认知编码。

学生质疑:最小的真分数为什么是1/N,而不是0/N?

整数可以看成是特殊的分数,分母是1的分数和分子是0分数,是一种特殊的分数,它与我们课本上所定义的分数(把单位“1”平均分成若干份,表示这样的一份或者几份的数)是不一样的。这两类特殊的分数是不能用课本上所说的分数的意义去解释的,它是靠分数的补充定义来说明的。有些老师认为0/12不是分数,是因为他们不了解分数的补充定义。再者,根据分数与除法的关系也可以说明0/12是分数。小学《数学》第十册第91页说:“分数与除法的关系可以表示成下面的形式:被除数÷除数 =被除数 / 除数在整数除法中,除数不能是0。在分数中分母也不能是0。用 a 表示被除数,b 表示除数,就是 a ÷ b = a / b (b≠0) 。”由此我们不难看出:在整数除法中,被除数可以为0,这时表示成分数就是分子是0的分数,例如:0÷12 = 0/12,所以0/12是分数。第二:0/12是什么分数?上海教育出版社出版的《小学数学教师手册》第90页说:“在分数的原始定义中,没有包含分子为0的情况,但根据分数与除法的关系,可类推出 0÷ a = 0 / a ( a≠0),所以补充规定:0/a = 0 ( a≠0) ,并称之为零分数。在小学里,对零分数一般不作专门介绍,它在分数减法运算中自然出现。”由此我们可以知道:分子是0的分数(比如0/12)是一种特殊的分数,它们叫作零分数,这种分数一般不独立出现,多出现在分数减法计算的过程中。

数学《真分数和假分数》教学反思3

“真分数和假分数”这节课是在学习了分数的意义后学习的内容,这节课看似没有太多的内容,但是如果认真深挖教材,要讲的东西却很多。本节课教学时,我借鉴了教研室的数学专家张红娜老师的教学方法,借助学生的知识基础和学生的动手操作,辨析概念,掌握概念。

强调数形结合,帮助学生建构概念,这是本节课的主要特点。我很清楚的记得张老师是先让学生用圆片来表示不同的分数,这样做我认为既可以联系旧知,又可以让学生在用圆片表示分数的过程中充分感知分数的大小。先让学生用一张圆片分别表示出它的四分之一、四分之二、四分之三,四分之四,这几个分数学生都能在一张圆片纸上轻松表示出来。然后提出新的问题,如果要表示出四分之五,应该怎样表示?在前边表示分数的基础上,学生通过讨论发现了两种方法:即用四分之四加上四分之一的两个圆片就是四分之五,也可以用四分之三的加上四分之二的两张圆片也可以表示出四分之五。接着又让学生分别表示出四分之七,四分之九等分数。在学生通过动手感知分数后,让学生对这些分数进行分类,因为在做分数的时候学生已经有了基础,所以学生很容易就说出了分数可以根据比1大或者是比1小进行分类,到这时就水到渠成了,再做以总结,就顺理成章的引出了真分数和假分数。

还清楚的记得张老师在讲完这节课后说过这样一句话:学数学就是为了用数学,我从听这节课,又按照这个思路和方法上课后,我感觉到数学确实是这样的。同时我也感觉到,任何一节课,我们只要结合学生已有的知识基础,结合学生的认知特点,站在学生立场上认真钻研教材,教学效果就会更好。教学真的需要我们用心去钻研,去思考。

《真分数和假分数》课后教学反思4

《真分数和假分数》是在学生已经学习过分数的意义和分数与除法的关系的基础上进行教学的,这一教学内容将进一步加深并巩固学生对于分数意义的理解,为今后学习带分数、比较分数大小和分数加减法奠定基础。

因为真分数和假分数是一节概念教学课,概念的形成是认识的发展过程,也就是在对事物感知和分析、比较、抽象的基础上,概括一类事物的本质属性。在概念教学环节中,我围绕教学目标,让学生经历了“涂色——描述——观察——再描述”这一系列过程,用折纸和涂色的方式表示出分数,学生在动手操作、主动参与中潜移默化地复习分数的意义,深化了“平均分”的认识;在动手操作中,学生切实感知了列出的几个分数和单位“1”之间的关系,为真假分数概念的理解做好铺垫,使真假分数的内涵和外延得以显现。训练学生表达对于分数意义的理解,突出将谁看为单位“1”这一难点。在说理过程中,虽然学生的发言展现出认知的矛盾,但在师生的交流中学生逐渐明晰用图形表示假分数的方法,学生对于假分数意义的理解逐步加深,使得真分数和假分数的概念呼之欲出。整个片断,教师为学生安排充分的时间和空间进行自主探究活动,充分发挥学生的潜力,引导学生用已有知识获取解决问题的策略,使学习数学的过程真正成为充满交流和碰撞、有着鲜活感受的过程。

相关推荐

热门文档

21 513546