首页 > 学习资料 > 初中教案 >

七年级数学上册教案精编5篇

网友发表时间 151835

【序言】由阿拉题库最美丽的网友为您整理分享的“七年级数学上册教案精编5篇”教学资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!

七年级数学上册教案1

教学目标

1.进一步掌握有理数的运算法则和运算律;

2.使学生能够熟练地按有理数运算顺序进行混合运算;

3.注意培养学生的运算能力.

教学重点和难点

重点:有理数的混合运算.

难点:准确地掌握有理数的运算顺序和运算中的符号问题.

课堂教学过程设计

一、从学生原有认知结构提出问题

1.计算(五分钟练习):

(5)-252; (6)(-2)3;(7)-7+3-6; (8)(-3)×(-8)×25;

(13)(-616)÷(-28); (14)-100-27; (15)(-1)101; (16)021;

(17)(-2)4; (18)(-4)2; (19)-32; (20)-23;

(24)×104÷(-5).

2.说一说我们学过的有理数的运算律:

加法交换律:a+b=b+a;

加法结合律:(a+b)+c=a+(b+c);

乘法交换律:ab=ba;

乘法结合律:(ab)c=a(bc);

乘法分配律:a(b+c)=ab+ac.

二、讲授新课

前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的。顺序进行运算?

1.在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行.

审题:(1)运算顺序如何?

(2)符号如何?

说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果.带分数分成整数部分和分数部分时的符号与原带分数的符号相同.

以上就是一米范文范文为大家整理的5篇《七年级数学上册教案》,希望对您有一些参考价值,更多范文样本、模板格式尽在一米范文范文。

七年级数学上册教案2

一、有理数的意义

1、有理数的分类

知识点:大于零的数叫正数,在正数前面加上“﹣”(读作负)号的数叫负数;如果一个正数表示一个事物的量,那么加上“﹣”号后这个量就有了完全相反的意义;3,,也可写作+3,+,+;零既不是正数,也不是负数。

2、数轴

知识点:数轴是数与图形结合的工具;数轴:规定了原点、正方向和单位长度的直线;数轴的三元素:原点、正方向、单位长度,这三元素缺一不可,是判断一条直线是否是数轴的根本依据;数轴的作用:1)形象地表示数(因为所有的有理数都可以用数轴上的点表示,以后会知道数轴上的每一个点并不都表示有理数),2)通过数轴从图形上可直观地解释相反数,帮助理解绝对值的意义,3)比较有理数的大小:a)右边的数总比左边的数大,b)正数都大于零,c)负数都小于零,d)正数大于一切负数

3、相反数

知识点:只有符号不同的两个数互为相反数;在数轴上表示互为相反数的两个点到原点的距离相等且分别在原点的两边;规定:0的相反数是0。

4、绝对值

知识点:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作∣a∣;绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,即若a>0,则∣a∣=a.若a=0,则∣a∣=0.若a<0,则∣a∣=﹣a;绝对值越大的负数反而小;两个点a与b之间的距离为:∣a-b∣。

二、有理数的运算

1、有理数的加法

知识点:有理数的加法法则:1)同号两数相加,取相同的符号,并把绝对值相加;2)异号两数相加,①绝对值相等时,和为零(即互为相反数的两个数相加得0);②绝对值不相等时,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3)一个数和0相加仍得这个数。

加法交换律:a+b=b+a;加法结合律:a+b+c=a+(b+c)

多个有理数相加时,把符号相同的数结合在一起计算比较简便,若有互为相反的数,可利用它们的和为0的特点。

2、有理数的减法

知识点:有理数的减法法则:减去一个数等于加上这个数的相反数,即a-b=a+(-b)。

注意:运算符号“+”加号、“-”减号与性质符号“+”正号、“-”负号统一与转化,如a-b中的减号也可看成负号,看作a与b的相反数的和:a+(-b);一个数减去0,仍得这个数;0减去一个数,应得这个数的相反数。

3、有理数的加减混合运算

知识点:有理数的加减法混合运算可以运用减法法则统一成加法运算;加减法混合运算统一成加法运算以后,可以把“+”号省略,使算式变得更加简洁。

4、有理数的乘法

知识点:乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数和0相乘都得0。

几个不等于0的数相乘,积的符号由负因数的个数决定;当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。几个数相乘,有一个因数为0,积就为0。

乘法交换律:ab=ba乘法结合律:abc=a(bc)乘法分配律:a(b+c)=ab+bc

5、有理数的除法

知识点:除法法则1:除以一个数等于乘上这数的倒数,即a÷b==a(b≠0即0不能做除数)。

除法法则2:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。

倒数:乘积是1的两数互为倒数,即a=1(a≠0),0没有倒数。

注意:倒数与相反数的区别

6、有理数的乘方

知识点:乘方:求n个相同因数的积的运算。乘方的结果叫幂,an中,a叫做底数,n叫做指数。

乘方的符号法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何次幂都为0。

7、有理数的混合运算

知识点:运算顺序:先乘方,再乘除,最后算加减,遇到有括号,先算小括号,再中括号,最后大括号,有多层括号时,从里向外依次进行。

技巧:先观察算式的结构,策划好运算顺序,灵活进行运算。

重、难点与关键3

1、重点:正确理解有理数、相反数、绝对值等概念;会用正、负数表示具有相反意义的量,会求一个数的相反数和绝对值

2、难点:准确理解负数、绝对值等概念

3、关键:正确理解负数的意义和绝对值的意义

七年级上册数学教案4

一、教学目标

1、理解一个数平方根和算术平方根的意义;

2、理解根号的意义,会用根号表示一个数的平方根和算术平方根;

3、通过本节的训练,提高学生的逻辑思维能力;

4、通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。

二、教学重点和难点

教学重点:平方根和算术平方根的概念及求法。

教学难点:平方根与算术平方根联系与区别。

三、教学方法

讲练结合。

四、教学手段

多媒体

五、教学过程

(一)提问

1、已知一正方形面积为50平方米,那么它的边长应为多少?

2、已知一个数的平方等于1000,那么这个数是多少?

3、一只容积为立方米的正方体容器,它的棱长应为多少?

这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的下面作一个小练习:填空

1、(  )2=9;   2.(  )2 =;

5、(  )2=

学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。。

由练习引出平方根的概念。

(二)平方根概念

如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。

用数学语言表达即为:若x2=a,则x叫做a的平方根。

由练习知:±3是9的平方根;

±是的平方根;

0的平方根是0;

±是的平方根。

由此我们看到3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空:

(   )2=-4

学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的下面总结一下平方根的性质(可由学生总结,教师整理)。

(三)平方根性质

1、一个正数有两个平方根,它们互为相反数。

有一个平方根,它是0本身。

3、负数没有平方根。

(四)开平方

求一个数a的平方根的运算,叫做开平方的运算。

由练习我们看到3与-3的平方是9,9的平方根是3和-3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。

(五)平方根的表示方法

一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“- ”表示,a的平方根合起来记作,其中读作“二次根号”,读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。

练习:1.用正确的符号表示下列各数的平方根:

①26②247③④3⑤

解:①26的平方根是xx

②247的平方根是xx

③的平方根是xx

④3的平方根是xx

⑤的平方根是xx

七年级数学上册教案5

学习目标

1、能根据题意用字母表示未知数,然后分析出等量关系,再根据等量关系列出方程。

2、理解什么是一元一次方程。

3、理解什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。

重点难点

体会找等量关系,会用方程表示简单实际问题,能验证一个数是否是一个方程的解。

导学指导

一、温故知新

1:前面学过有关方程的一些知识,同学们能说出什么是方程吗?

答:叫做方程。

一元一次方程复习

注意:我们在解一元一次方程时,既要学会按部就班(严格按步骤)地解方程,又要善于认真观察方程的结构特征,灵活采用解方程的一些技巧,随机应变(灵活打乱步骤)解方程,能达到事半功倍的效果。对于一般解题步骤与解题技巧来说,前者是基础,后者是机智,只有真正掌握了一般步骤,才能熟能生巧。

解一元一次方程常用的技巧有:

(1)有多重括号,去括号与合并同类项可交替进行

(2)当括号内含有分数时,常由外向内先去括号,再去分母

(3)当分母中含有小数时,可根据xx分数的基本性质xx把分母化成整数

(4)运用整体思想,即把含有未知数的代数式看作整体进行变形

(三)实际问题与一元一次方程

1、用一元一次方程解决实际问题的一般步骤是:

(1)审题,搞清已知量和待求量,分析数量关系。 (审题,寻找等量关系)

(2)根据数量关系与解题需要设出未知数,建立方程;

(3)解方程;

(4)检查和反思解题过程,检验答案的正确性以及是否符合题意,并作答。

2、用一元一次方程解决实际问题的典型类型

(1)数字问题:①数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c则这个三位数表示为xx100a+10b+cxx(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)。

②用一个字母表示连续的自然数、奇数、偶数等规律数。

(2)和、差、倍、分问题:关键词是“是几倍,增加几倍,增加到几倍,增加百分之几,增长率,哪个量比哪个量……”

《第三章一元一次方程》精编导学

从算式到方程

学习目标

1、知道什么是方程,什么是一元一次方程;

2、在实际问题中,能够找到并利用题中的等量关系列出方程。

重点难点

重点1.归纳方程、一元一次方程的概念;

2、分析实际问题中的数量关系,利用其中的相等关系列出方程。

难点:能够用方程解决一些实际问题。

学法指导

自主探究、合作学习

自主学习,基础过关

1、 (1)3+b=2b+1 (2)4+x=7

(3) =1400 (4)2x-2=6

请大家观察上面4个式子有什么共同特点?

从而得到:xxxxxxxxxxxxxxx的等式叫做方程。

2、阅读课本78页问题,你能用算术方法解答吗?试一试。

若设A,B两地间的路程是x km?则从A地到B地,卡车用了小时,客车用了小时。根据题意,可列出等式吗?

还有其他的解法吗?试着改变一种设法。

我的疑惑

合作探究,释疑解惑

1、根据下面实际问题中的数量关系,设未知数列出方程:

①用一根长为48cm的铁丝围成一个正方形,正方形的边长为多少?

②某校女生人数占全体学生数的52%,比男生多80人,这个学校有多少学生?

③练习本每本元,小明拿了10元钱买了若干本,还找回元。问:小明买了几本练习本?

小结:像上面①、②、③中列出的。方程,它们都含有xxxxx个未知数(元),未知数的次数都是xxxxxxx,这样的方程叫做一元一次方程。

(即方程的一边或两边含有未知数)

检测反馈,学以致用

1、根据条件列出等式:

①比a大5的数等于8:

②某数的30%比它的2倍少34:

③27与x的差的一半等于x的4倍:xxxxxxxxx

④比a的3倍小2的数等于a与b的和:

2、列方程解决实际问题

(1)用一根长24cm的铁丝围成一个长方形,使它的长是宽的倍,长方形的长,宽各应是多少?

(2)小芳种了一株树苗,开始时树苗高为40厘米,栽种后每周升高约15厘米,大约几周后树苗长高到1米?

总结提炼,知识升华

1、学习收获

2、需要注意的问题

课后训练,巩固拓展

1、必做题:教科书80页练习1,2,3,4题;

2、悬赏题(2个优)

鸡兔同笼,上有20头,下有52足,请问鸡兔各有多少只?

相关推荐

热门文档

17 151835