首页 > 学习资料 > 初中教案 >

初中数学说课教案(4篇)

网友发表时间 639007

【前言导读】此篇优秀教案“初中数学说课教案(4篇)”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

初中数学教案【第一篇】

初中数学分层教学的理论与实践

天山六中裴焕民

一、分层教学的含义

分层教学是指教师在学生知识基础、智力因素存在明显差异的情况下,有区别地设计教学环节进行教学,遵循因材施教的原则,有针对性地实施对不同类别学生的学习指导,不仅根据学生的不同选择不同的教法、布置作业,还因材施“助”、因材施“改”、因材施“教”,使每个学生都能在原有的基础上得以发展,从而达到不同类别的教学目标的一种教学方法。

分层教学是“着眼于与学生的可持续性的、良性的发展”的教育观念下的一种教学实施策略。所谓分层教学(同班、同年级分层次教学)就是教师在教授同一教学内容时,对同一个班内不同知识水平和接受能力的优、中、差生以相应的三个层次的教学深度和广度进行合讲分练,做到课堂教学有的放矢,区别对待,使每个学生都在自己原来的基础上学有所得,思有所进,在不同程度上有所提高,同步发展。教师的教学方法应从最低点起步,分类指导,逐步推进,做到“分合”有序,动静结合,并分层设计练习,分层设计课堂,分层布置作业,引导学生全员参与,各得进步。

二、分层教学必要性分析

1、教学现状呼唤分层教学的实施

义务教育的实施使小学毕业生全部升入初中学习,这样,在同一班里,学生的知识、能力参差不齐。但是,应试教育留下的种种弊端抑制了各层次的学生的学习积极性和兴趣,整齐划一的教学要求,忽视了学生之间的差异。为了使教育面向全体学生,减轻部分学生过重的负担,使他们在原有的基础上有所提高,全面提高教学质量,又要使有特长的学生得到更进一步的发展。因此必须实施因材施教,根据不同的学生的具体情况,确立不同的教学目标,采取不同的教学方法,使其个性得到充分发展,为社会培养各种层次的有用之人。

2、新课程改革呼唤分层教学的实施

数学课程改革的核心是课程的实施,而教学是课程实施的基本途径。课程改革归根到底是要转变教师的传统教学观念:包括教学方式的转变——从“教”到

“引”;知识技能掌握理念的转变——从“满堂灌”、“书山题海”到“在亲身经历中体会、理解、掌握知识技能”,强调自我的情感体验;教材观的转变——从“教教材”到“用教材”,教材变成我们引导学生探究知识的工具之一;评价机制的转变——从“唯分数论”到“适合学生自身特点的发展”,这是实施分层教学的原动力,但也是现今新课程改革的一个难点。

在新课改中实施分层教学法的目的是逐步树立学困生学习的信心,激发中等生的学习潜力,扩大优生的`学习面。为了适应当前素质教育的需要,我们要采用针对性的矫正和帮助,进行分层教学,分类指导,及时反馈,从中探索出一条教学改革的新路子。

3、学生个体差异的客观存在

心理学的研究结果表明:学生的学习能力差异是存在的,特别是学生在数学学习能力方面存在着较大的差异这已是一个不争的事实。造成差异的原因有很多,学生的先天遗传因素及环境、教育条件都有所不同,还有社会因素(即环境、教育条件、科学训练),这些原因是对学生学习能力的形成起着决定性作用,所以学生所表现出的数学能力有明显差异也是正常的。

学生作为一个群体,存在着个体差异

(1)智力差异。每个学生因为遗传基因的不同,智力的差异是不可避免的。有的人聪明;有的人愚钝,有的人形象思维强;有的逻辑思维强;有的人记忆力超人,但推理能力较差;有的人记忆力较差,却推理能力过人。

(2)学习基础差异。不同的学生在小学的数学状况不一样:有的学生数学十分优秀,有的学生数学学习基本还没入门,两极分化相当严重。

(3)学习品质差异。有的学生学习数学十分认真,有一套自己的数学学习方法,学得轻松愉快;而有的学生因为没有入门,数学学得十分艰难,部分学生甚至对数学学习丧失了信心。

4、分层次教学符合因材施教的原则

目前我国大部分省市的数学教学采用的是统一教材、统一课时、统一教参,在学生学习能力存在差异的情况下,在教学过程中往往容易产全“顾中间、丢两头”。如不因材施教,就使部分学生就成了陪读、陪考。数学能力强的学生潜能得不到充分发挥,能力稍差的学生就可能变成了后进生。有研究结果表明:教师、

家庭、社会、学生、学校等方面的因素都有可能是形成后进生的原因,其中有50%的原因是来自教师在教学中的失误。我们的基础教育既要注意确保学生的共性需求,又要顾及学生的个性发展,所以进行分层教育确有必要。

5、分层次教学能够有效推动教学过程的展开

按照教育家达尼洛夫关于教学过程的动力理论之说,认为只有学生学习的可能性与对他们的要求是一致的,才可能推动教学过程的展开,从而加快学习成绩的提高,而这两者的统一关系若被破坏,就会造成学业的不良后果。学生的学习可能是由他们生理和心理的一般发展水平与对某项学习的具体准备状态所决定的,学生学习可能性的构成因素中既有相对稳定的因素,又有易变的因素。相对稳定的因素,决定了学生在一段时间内可能达到的学习水平的范围,决定了学业不良学生要取得学业进步只能是一个渐进的过程;易变的因素,使学生能在:一定的主客观条件下提高或降低自己的实际可能性水平,从而促进或阻碍学习可能性与教学要求之间矛盾的转化,加快学习成绩提高或降低的速度。由此可见,分层次教学是着眼于协调教学要求与学生学习可能性的关系的一种极好的手段,使它们之间能相适应,从而推动教学过程的展开。

三、分层教学研究的目的意义

捷克教育家夸美纽斯在十七世纪提出来的班级授课制以其大大提高教学效率、加强学校工作的计划性和实际社会效益风行了三百多年后,其固有的不利于学生创造能力的培养和因材施教等种种弊端与社会发展对教育的要求的矛盾越来越尖锐起来。随着科学技术的发展,社会日益进步,教育资源和教育需求的增长和变化,班级授课制在我国做出辉煌的贡献后逐步显现出其先天的严重不足。教师在班级授课制下对能力强的学生“吃不饱”,能力欠佳的学生“吃不消”普遍感到力不从心。分层教学在这种情况下应运而生,成为优化单一班级授课制的有利途径。

1.有利于所有学生的提高:分层教学法的实施,避免了部分学生在课堂上完成作业后无所事事,同时,所有学生都体验到学有所成,增强了学习信心。

2、有利于课堂效率的提高:首先,教师事先针对各层学生设计了不同的教学目标与练习,使得处于不同层的学生都能“摘到桃子”,获得成功的喜悦,这极大地优化了教师与学生的关系,从而提高师生合作、交流的效率;其次,教师在

备课时事先估计了在各层中可能出现的问题,并做了充分的准备,使得实际施教更有的放矢、目标明确、针对性强,增大了课堂教学的容量。总之,通过这一教学法,有利于提高课堂教学的质量和效率。

3.有利于教师全面能力的提升:通过有效地组织好对各层学生的教学,灵活地安排不同的层次策略,极大地锻炼了教师的组织调控与随机应变能力。分层教学本身引出的思考和学生在分层教学中提出来的挑战都有利于教师能力的全面提升。

四、分层教学的理论基础

1、掌握学习理论

布鲁姆提出的“掌握学习理论”主张:“给学生足够的学习时间,同时使他们获得科学的学习方法,通过他们自己的努力,应该都可以掌握学习内容”。“不同学生需要用不同的方法去教,不同学生对不同的教学内容能持久地集中注意力”。为了实现这个目标,就应该采取分层教学的方法。

2、教学最优化理论

巴班斯基的“教学最优化理论”的核心是:教学过程的最优化是选择一种能使教师和学生在花费最少的必要时间和精力的情况下获得最好的教学效果的教学方案并加以实施。分层教学是实现这一目标的有效方式之一。

3、新课标的基本理念

《数学课程标准》提出了一种全新的数学课程理念:“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展”。面向全体学生,体现了义务教育的基础性、普及性和发展性。不仅为数学教学内容的设定指出方向,而且考虑到学生的可持续发展对数学的需求,并为学生学习数学可能产生的差异性留有充分的余地。

五、分层教学实施的指导思想及原则

首先,分层次教学的主体是班级教学为主,按层次教学为辅,层次分得好坏直接影响到“分层次教学”的成功与否。其指导思想是变传统的应试教育为素质教育,是成绩差异的分层,而不是人格的分层。为了不给差生增加心理负担,必须做好分层前的思想工作,了解学生的心理特点,讲情道理:学习成绩的差异是客观存在的,分层次教学的目的不是人为地制造等级,而是采用不同的方法帮助

他们提高学习成绩,让不同成绩的学生最大限度地发挥他们的潜力,以逐步缩小差距,达到班级整体优化。

在对学生进行分层要坚持尊重学生,师生磋商,动态分层的原则。应该向学生宣布分层方案的设计,讲清分层的目的和意义,以统一师生认识;指导每位学生实事求是地估计自己,通过学生自我评估,完全由学生自己自愿选择适应自己的层次;最后,教师根据学生自愿选择的情况进行合理性分析,若有必要,在征得学生同意的基础上作个别调整之后,公布分层结果。这样使部分学生既分到了合适的层次上,又保留了“脸面”,自尊心也不至于受到伤害,也提高了学生学习数学的兴趣。

其次,在分层教学中应注意下列原则的使用:

①水平相近原则:在分层时应将学习状况相近的学生归为“同一层”;

②差别模糊原则:分层是动态的、可变的,有进步的可以“升级”,退步的应“转级”,且分层结果不予公布;

③感受成功原则:在制定各层次教学目标、方法、练习、作业时,应使学生跳一跳,才可摘到苹果为宜,在分层中感受到成功的喜悦;

④零整分合原则:教学内容的合与分,对学生的“放”与“扶”,以及课外的分层辅导都应遵守这个原则;

⑤调节控制原则:由于各层次学生要求不一,因此在课堂上以学、议为主,教师要善于激趣、指导、精讲、引思,调节并控制止好各层次学生的学习,做好分类指导;

⑥积极激励原则:对各层次学生的评价,以纵向性为主。教师通过观察、反馈信息,及时表扬激励,对进步大的学生及时调到高一层次,相对落后的同意转层。从而促进各层学生学习的积极性,使所有学生随时都处于最佳的学习状态。

六、实施分层教学的策略与措施

(一)分层建组

把学生分层编组是实施分层教学、分类指导的基础。学生的分类应遵循“多维性原则、自愿性原则和动态性原则”,教师通过对全班学生平时的数学学习的智能,技能、心理、成绩、在校表现、家庭环境等,并对所获得的数据资料进行综合分析,分类归档。在此基础上,将学生分成好、中、差层次的学习小组,让

初中数学教案【第二篇】

从不同方向看

一、教学目标

知识与技能目标

1.初步了解作函数图象的一般步骤;

2.能熟练作出一次函数的图象,掌握一次函数及其图象的简单性质;

3.初步了解函数表达式与图象之间的关系。

过程与方法目标

经历作图过程中由一般到特殊方法的转变过程,让学生体会研究问题的基本方法。

情感与态度目标

1.在作图的过程中,体会数学的美;

2.经历作图过程,培养学生尊重科学,实事求是的作风。

二、教材分析

本节课是在学习了一次函数解析式的基础上,从图象这个角度对一次函数进行近一步的研究。教材先介绍了作函数图象的一般方法:列表、描点、连线法,再进一步总结出作一次函数图象的特殊方法??两点连线法。结合一次函数的图象,教材以议一议的方式,引导学生探索函数解析式与图象二者间的关系,为进一步学习图象及性质奠定了基础。

教学重点:了解作函数图象的一般步骤,会熟练作出一次函数图象。

教学难点:一次函数及图象之间的对应关系。

三、学情分析

函数的图象的概念及作法对学生而言都是较为陌生的。教材从作函数图象的一般步骤开始介绍,得出一次函数图象是条直线。在此基础上介绍用两点连线得一次函数的图象,学生就容易接受了。在函数解析式与图象二者之间的探讨这部分内容上,不要作更高要求,学生能回答书中的问题就可以了。教学中尽可能的多作几个一次函数的图象,让学生直观感受到一次函数的图象是条直线。

四、教学流程

一、复习引入

下图是小红某天内体温变化情况的曲线图。你知道这幅图是怎样作出来的吗?把每个时间与其对应的体温分别作为点的横坐标和纵坐标,在直角坐标系中描出这些点,这样就可以作出这个图象。

二、新课讲解

把一个函数的自变量和对应的因变量的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

下面我们来作一次函数y = x+1的图象

分析:根据定义,需要在直角坐标系中描出许多点,因此我们应先计算这些点的横、纵坐标,即x与对应的y的值。我们可借助一个表格来列出每一对x,y的值。因为一次函数的自变量X可以取一切实数,所以X一般在0附近取值。

解:列表:

描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。

连线:把这些点依次连接起来,得到y = x+1图象(如图)它是一条直线。

三、做一做

(1)仿照上例,作出一次函数y= ?2x+5的图象。

师:回顾刚才的作图过程,经历了几个步骤?

生:经历了列表、描点、连线这三个步骤。

师:回答得很好。作函数图象的一般步骤是列表、描点、连线。今后我们可以用这个方法去作出更多函数的图象。

师:从刚才同学们作出的一次函数的图象中我们可以观察到一次函数图象是一条直线。

(2)在所作的图象上取几个点,找出它们的横、纵坐标,验证它们是否都满足关系:y= ?2x+5

四、议一议

(1)满足关系式y= ?2x+5的'x 、 y所对应的点(x,y)都在一次函数y= ?2x+5的图象上吗?

(2)一次函数y= ?2x+5的图象上的点(x,y)都满足关系式y= ?2x+5吗?

(3)一次函数y=kx+b的图象有什么特点?

一次函数y=kx+b的图象是一条直线,因此作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了。一次函数y=kx+b的图象也称为直线y=kx+b

例1做出下列函数的图象

教师点评:作一次函数图象时,通常选取的两点比较特殊,即为一次函数和X轴、 y轴的交点,在列表计算时,分别令X=0,y=0就可计算出这两点的坐标。正比例函数当X=0时,y=0,即与x 、 y铀的交点重合于原点。因此做正比例函数的图象时,只需再任取一点,过它与坐标原点作一条直线即可得到正比例函数的图象。从而正比例函数y=kx的图象是经过原点(0,0)的一条直线。

练一练:作出下列函数的图象:

(1)y= ?5x+2,???? (2)y= ?x

(3)y=2x?1,(4)y=5x

五、课堂小结

这节课我们学习了一次函数的图象。一次函数的图象是一条直线,正比例函数的图象是经过原点的一条直线。在作图时,只需确定直线上两点的位置,就可得到一次函数的图象。一般地,作函数图象的三个步骤是:列表、描点、连线。

六、课后练习

随堂练习习题

五、教学反思

本节课主要介绍作函数图象的一般方法,通过对一次函数图象的认识,得到作一次函数及正比例函数的图象的特殊方法(两点确定一条直线)。让学生能够迅速找到直线与坐标轴的交点,这是本节课的难点。数形结合,找准这两个特殊点坐标的特点(x=0或y=0),让学生理解的记忆才能收到较好的效果。

数学说课课件【第三篇】

不管是哪个版本的教材遵循的是相同的课程标准,相似的知识点,面对的是相同年龄层次的学生,只是知识呈现的形式有所不同。下面就我教学这节课的一些思考,向大家作个汇报,不足之处敬请批评指正。

第一点、分析教材,拟定教学目标

本单元是新教材“数与代数”领域内容的一部分,从形象的图形排列规律,颜色交替规律慢慢过渡到抽象的数列规律,既有着广阔的生活背景,又蕴含着深刻的数学思想。第一课时主要学习一些直观图形和具体事物的排列变化规律。

依据课程标准和本节课教学内容,特拟定以下三个教学目标:

1.知识目标:通过物品的有序排列,使学生初步认识简单的排列规律,会根据规律指出下一个物体。

2.能力目标:通过涂色、摆学具等活动,培养学生的动手能力,激发学生创新意识。

3.情感目标:使学生在数学活动中体会数学的价值,体会规律的美和创造的快乐,增强学习数学的兴趣。

本节课的教学重点是让学生通过观察、操作等实践活动发现事物的简单排列规律。教学难点是引导学生有意识地创造出有规律的排列。

第二点、分析学情,确定教法学法

一年级学生在生活中、学习中已经接触过一些规律性的现象,对于规律有一定的感知基础,但是缺乏有意的注意、学习和研究,认识模糊而又肤浅。同时一年级学生年龄小,活泼好动,注意力容易分散,但思维灵活、充满好奇心和求知欲。

根据学生的年龄特点和认知基础,本节课采用直观演示、游戏激趣、动手操作、引导探究等教学方法,从扶到放,让学生在猜一猜、摆一摆、涂一涂等一系列有趣的数学活动中,对规律有个比较清晰地认识;指导学生以动手实践、自主探索为主要学习方式,从被动到主动、从具体到抽象,逐步悟出找规律和创造规律的方法。

教具学具准备

多媒体课件一套,双面胶,正方体长方体学具,蓝色圆片、黑色三角形、红色正方形卡片若干,水彩笔,作业纸等。

第三点、主要教学过程

结合以上分析,和本节课的内容特点,我设计的教学流程分为五个部分:

流程一、在情境中感知规律。

新课伊始,通过一串有规律排列的千纸鹤,让学生在观察、猜想的过程中,自然地融入到本节课的学习中,直观感受简单规律的'存在和美丽。

流程二、在探究中认识规律

课件出示教材中游乐园图片,引导学生观察灯笼、彩花、彩旗的排列规律,利用三组不同物体,反复展示最简单的一一间隔排列规律,使学生对规律的认识逐渐清晰。

再通过男女生排队的游戏,寓教于乐,让学生在使用规律的过程中,潜移默化地巩固对规律的认识。

流程三、在生活中欣赏规律

通过让学生在熟悉的校园图片中找规律、在生活中找规律和对有规律排列的美丽图片的欣赏,进一步拓展学生对规律的认识:规律在生活中随处可见,规律的形态千变万化,加强了学生对规律的体验和感知,为学生下一步运用规律、创造规律及发散思维做好铺垫。

同时,让学生体会到有规律排列的秩序感、美感和应用性,激发学生的学习兴趣和学习热情。

流程四、在运用中理解规律

这部分安排了三个环节:摆一摆、涂一涂、说一说。

一系列富有生活性、游戏性、趣味性、挑战性,且有坡度、有层次的习题,由易到难,由“扶”到“放”,最大限度的使学生所学知识在练习中得到拓展。通过摆学具、涂色、看图找规律,以学生喜闻乐见的形式,激发了学生自主探究、发现规律、运用规律解决问题的求知热情。并在运用中进一步加深对规律的理解,也为下一环节中创造规律作好铺垫。

流程五、在创造中深化规律

请学生用信封里的图形卡片摆一摆,尝试自己创造一些有规律的组合。给学生以充分的时间和空间,放手让学生在独立思考、自主探究的基础上合作交流、动手实践。化被动为主动,使学生在动手、动口、动脑中,深入理解规律,不断增强创新意识,提升学生的创造能力。

整节课中,始终引导学生主动观察、充分体验、动手实践、积极创新,努力做到既注重学生的独立思考,又注重合作交流,既重视知识与能力的共进,又关注情感和体验的提高,让学生全面、深刻地认识现象中蕴含的规律,领会规律的本质。

初中数学说课稿【第四篇】

一、设计思想:

数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的结合,会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在学习潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。培养学生的动手能力和创新能力,丰富和发展学生的数学活动经历,并使学生充分体会到数学之趣、数学之用、数学之美。

处理好教与学的关系。教师既要做到精讲精练,又要敢于放手引导学生参与尝试和讨论,展开思维活动。

根据新教材留给学生一定的思维空间的特点,教师要鼓励学生自己动脑参与探索,让学生有发表意见的机会,绝对不能包办代替,使学生不仅能学会,而且能会学。

充分发挥网络在课堂教学中的优势,力争促进学生学习方式的转变,由被动听讲式学习转变为积极主动的探索发现式学习。

数学问题生活化,主导主体相结合,发挥媒体技术优势,探究练习相结合,符合《课标》精神。

网络环境下代数课的教学模式:设置情境—提出问题、自主探究、合作交流、反思评价、巩固练习、总结提高

二、背景分析:

(一)学情分析:

内容是义务教育课程标准实验教科书(人民教育出版社)数学八年级下册第十六章:《分式》

学生是本校初二实验班的学生,参加北师大“基础教育跨越式发展”课题实验一年半,学生基础知识较扎实,具有一定探索解决问题的能力,电脑使用水平较熟练,对于网络环境下的学习模式已适应。

本节课实施网络环境下教学,采用自学导读式教学模式。学生喜欢上网络数学课,学习数学的兴趣较浓。

(二)内容分析:

本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元二次方程的分式方程打下基础。

通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意

识,渗透类比转化思想。

(三)教学方式:自学导读—同伴互助—精讲精练

(四)教学媒体:Midea———Class纯软多媒体教学网几何画板

三、教学目标:

知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生

增根的原因,掌握解分式方程验根的方法。

过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式

方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的

能力,培养应用意识,渗透转化思想。

情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用

知识解决问题的成功体验,树立学好数学的自信心。

教学重点:解分式方程的基本思路和解法。

教学难点:理解分式方程可能产生增根的原因。

设计说明:情感、态度、价值观目标不应该是一节课或一学期的教学目标,它应该贯穿于初中数学教学的每一堂课,它应该与具体的数学知识联系在一起,才能让教师好把握,学生好掌握,否则就是空中楼阁,雾里看花,水中望月。

四、板书设计:

a不是分式方程的解

(二)学习方法:类比与转化

教学思考:伴随教学过程的进行,不失时机的,恰到好处的书写板书,要比用多媒体呈现出来效果好,绝不能用媒体技术替代应有的板书,现代教育技术与传统教育技术完美的结合才是提高课堂教学效率的有效途径之一。

五、教学过程:

活动1:创设情境,列出方程

设计说明:教师不失时机的对学生进行思想教育,激励学生,寓德于教。体现了教学评价之美—激励启迪。

设计说明:通过经历实际问题→列分式方程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,激发学生的探究欲与学习热情,为探索分式方程的解法做准备。

活动2:总结定义,探究解法

使学生能从整体上把握数、式、方程及它们之间的联系与区别;通过合作探究分式方程的解法,培养学生的探究能力,增强利用类比转化思想解决实际问题的能力及合作的意识。

教学思考:再一次体现了对全章进行整体设计的好处,在学习16、1分式和16、2分式的运算时,几乎每一节课都运用类比的思想—分式与分数类比和进行算法多样化训练,所以才出现了这样好的效果。在利用媒体技术拓展学习内容时要遵循以下原则:

一、拓展内容要与所学内容有有机联系。

二、拓展内容要符合学生实际认知水平,不要任意拔高。

三、拓展内容要适量,不要信息过载。

活动3:讲练结合,分析增根

活动5:布置作业,深化巩固(略)

相关推荐

热门文档

17 639007