初中数学试讲教案【最新4篇】
【序言】由三一刀客最美丽的网友为您整理分享的“初中数学试讲教案【最新4篇】”教学资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!
初中数学试讲教案【第一篇】
教学目标
(1)认知目标
理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。
(2)技能目标
经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。
(3)情感态度与价值观
教学中让学生在主动探究,合作交流中渗透类比转化的思想,使学生在学知识的同时感受探索的乐趣和成功的体验。
教学重难点
重点:运用分式的乘除法法则进行运算。
难点:分子、分母为多项式的分式乘除运算。
教学过程
(一)提出问题,引入课题
俗话说:“好的开端是成功的一半”同样,好的引入能激发学生兴趣和求知欲。因此我用实际出发提出现实生活中的问题:
问题1:求容积的高是,(引出分式乘法的学习需要)。
问题2:求大拖拉机的工作效率是小拖拉机的工作效率的倍,(引出分式除法的学习需要)。
从实际出发,引出分式的乘除的实在存在意义,让学生感知学习分式的乘法和除法的。实际需要,从而激发学生兴趣和求知欲。
(二)类比联想,探究新知
从学生熟悉的分数的乘除法出发,引发学生的学习兴趣。
解后总结概括:
(1)式是什么运算?依据是什么?
(2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导,学生应该能说出依据的是:分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导学生类比分数的乘除法则,猜想出分式的乘除法则。
(分式的乘除法法则)
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(三)例题分析,应用新知
师生活动:教师参与并指导,学生独立思考,并尝试完成例题。
P11的例1,在例题分析过程中,为了突出重点,应多次回顾分式的乘除法法则,使学生耳熟能详。P11例2是分子、分母为多单项式的分式乘除法则的运用,为了突破本节课的难点我采取板演的形式,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法。
(四)练习巩固,培养能力
P13练习第2题的(1)、(3)、(4)与第3题的(2)。
师生活动:教师出示问题,学生独立思考解答,并让学生板演或投影展示学生的解题过程。
通过这一环节,主要是为了通过课堂跟踪反馈,达到巩固提高的目的,进一步熟练解题的思路,也遵循了巩固与发展相结合的原则。让学生板演,一是为了暴露问题,二是为了规范解题格式和结果。
(五)课堂小结,回扣目标
引导学生自主进行课堂小结:
1、本节课我们学习了哪些知识?
2、在知识应用过程中需要注意什么?
3、你有什么收获呢?
师生活动:学生反思,提出疑问,集体交流。
(六)布置作业
教科书习题第1、2(必做)练习册P(选做),我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。
初中数学试讲教案【第二篇】
学情分析:
高三(7)是我校理科重点班,该班的学生具有良好的数学功底,处于复习阶段的他们目标更明确,学习热情高,课堂投入,思考积极。就本节开课的内容而言,学生已掌握了“对称问题”本质属性,能够从图象和表达式上准确地理解对称问题。但也只是停留在就事论事的基础上,对问题的抽象、归纳概括,引申拓展还缺乏一定的能力和意识。对于周期概念,学生没有什么的问题。
教材分析:
1.对称问题是高中数学中比较难的问题,学生一般由于问题的抽象性,同时由于这中间存在关于点对称和关于直线对称这两类问题,而它们的数学表达式又是那么相似,学生如果没有真正理解很难分清谁是谁非。而且在高考的。问题中经常会碰到,因此有必要加以澄清和深化理解。
2.对称问题和周期问题也存在一定的联系,本节可以通过足够的条件阐明这一联系的实质。
教学目标:
理解一个函数存在两次对称(可能关于两个点对称或两条直线对称或一个点加上一个对直线)时,如何判断函数具有周期性。
重点和难点:
具有两次对称问题的抽象函数具有周期性,而且要求求出周期。
教学方法:
从简单到复杂,以启发思想为指导,精讲重思,暴露学生的思维,使学生整节课都处于思考之中。
教学程序:
一、引入
师:当一个人站在一面镜子前,面对镜子一定的距离,那么在镜中的像有什么特征?
生:(物理常识)人和像关于镜子对称。
师:现在在此人的身后再放一面镜子,镜面对着人的背面,此时在此人面前的镜子中的像又是什么?
生:如果镜子够大的话,里面将是无数个排列的人。
师:道理何在?
生:首先是人在前面镜中的像连同人一起要在后面镜中成像,这一像反过来连同人又在前面镜中成像,这样反反复复,就得到了无数个人像,而且具有周期性(即图象重复出现)。
师:如果将人看成一段函数,将镜子看成一条对称轴,那么整个函数的图象应该是怎样的(图象具有什么特征)。
引入课题:对称+对称=
二、探究
回顾:关于图象的对称问题分为两类:一类是关于点对称,另一类是关于直线对称,今天我们来研究一般的函数对称问题,我们从函数表达式来研究,对于直线对称:若f(x)关于x=a对称,则有f(x)=f(2a-x)或f(a+x)=f(a-x);对于点对称:f(x)关于(a,0)对称,则有f(x)=-(2a-x)或f(a+x)=-f(a-x)。
对于奇函数[f(x)=-f(-x)]和偶函数[f(x)=f(-x)],则是这两类对称中的特例。
延伸:若是f(a+x)=f(b+x),则函数关于什么对称(关于直线x=(a+b)/2对称)
提问:请同学们找几个关于直线x=a对称的函数的表达式?
生:f(4a-x)=f(6a+x)
下面研究当函数具有两次对称时,结果有什么特征?
问题设计:
①函数f(x)
(1)是偶函数
(2)关于x=a对称
分析:由条件(2),可得f(a+x)=f(a-x),又由条件(1),所以f(x+a)=f(x-a)。
(以x+a代替上式中的x),所以f(x)=f(2a+x),由周期定义f(x)=f(T+x),所以f(x)是以|2a|为周期的函数
②函数f(x)
(1)是奇函数
(2)关于x=a对称
分析:由条件(2),可得f(x)=f(2a-x)又由条件(1)f(x)=-f(-x),所以-f(-x)=f(2a-x),即-f(x)=f(2a+x),所以f(4a+x)=-f(2a+x)=f(x),可得函数f(x)是以|4a|为周期的函数,
以此类推,
③函数f(x)满足
(1)是偶函数
(2)关于(a,0)对称
④函数f(x)满足
(1)是奇函数
(2)关于(a,0)对称
⑤函数f(x)满足
(1)关于x=b对称
(2)关于x=a对称
⑥函数f(x)满足
(1)关于(a,0)对称
(2)关于(b,0)对称
⑦函数f(x)满足
(1)关于x=a对称
(2)关于(b,0)对称
(师生共同完成)
三、结束。
关于初中数学试讲教案【第三篇】
知识技能
会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考
1、经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。进一步发展符号意识。
2、通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题
能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度
经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点
建立方程解决实际问题,会通过移项解 “ax+b=cx+d”类型的一元一次方程。
教学难点
分析实际问题中的相等关系,列出方程。
教学过程
活动一 知识回顾
解下列方程:
1、 3x+1=4
2、 x-2=3
3、 2x+=-10
4、 3x-7x=2
提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?
教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)
教师追问:变形的依据是什么?
学生独立思考、回答交流。
本次活动中教师关注:
(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二 问题探究
问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本。这个班有多少学生?
教师:出示问题(投影片)
提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?
(学生尝试提问)
学生:读题,审题,独立思考,讨论交流。
1、找出问题中的已知数和已知条件。(独立回答)
2、设未知数:设这个班有x名学生。
3、列代数式:x参与运算,探索运算关系,表示相关量。(讨论、回答、交流)
4、找相等关系:
这批书的总数是一个定值,表示它的两个等式相等。(学生回答,教师追问)
5、列方程:3x+20=4x-25(1)
总结提问:通过列方程解决实际问题分析时,要经历那些步骤?书写时呢?
教师提问1:这个方程与我们前面解过的方程有什么不同?
学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25)。
教师提问2:怎样才能使它向x=a的形式转化呢?
学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20。
3x-4x=-25-20(2)
教师提问3:以上变形依据是什么?
学生回答:等式的性质1。
归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项。
师生共同完成解答过程。
设问4:以上解方程中“移项”起了什么作用?
学生讨论、回答,师生共同整理:
通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。
教师提问5:解这个方程,我们经历了那些步骤?列方程时找了怎样的相等关系?
学生思考回答。
教师关注:
(1)学生对列方程解决实际问题的一般步骤:设未知数,列代数式,列方程,是否清楚?
(2)在参与观察、比较、尝试、交流等数学活动中,体验探究发现成功的快乐。
活动三 解法运用
例2解方程
3x+7=32-2x
教师:出示问题
提问:解这个方程时,第一步我们先干什么?
学生讲解,独立完成,板演。
提问:“移项”是注意什么?
学生:变号。
教师关注:学生“移项”时是否能够注意变号。
通过这个例题,掌握“ax+b=cx+d”类型的一元一次方程的解法。体验“移项”这种变形在解方程中的作用,规范解题步骤。
活动四 巩固提高
1、第91页练习(1)(2)
2、某货运公司要用若干辆汽车运送一批货物。如果每辆拉6吨,则剩余15吨;如果每辆拉8吨,则差5吨才能将汽车全部装满。问运送这批货物的汽车多少量?
3、小明步行由A地去B地,若每小时走6千米,则比规定时间迟到1小时;若每小时走8千米,则比规定时间早到小时。求A、B两地之间的距离。
教师按顺序出示问题。
学生独立完成,用实物投影展示部分学而生练习。
教师关注:
1、学生在计算中可能出现的错误。
系数为分数时,可用乘的办法,化系数为1。
3、用实物投影展示学困生的完成情况,进行评价、鼓励。
巩固“ax+b=cx+d”类型的一元一次方程的解法,反馈学生对解方程步骤的掌握情况和可能出现的计算错误。
2、3题的重点是在新情境中引导学生利用已有经验解决实际问题,达到巩固提高的目的。
活动五
提问1:今天我们学习了解方程的那种变形?它有什么作用、应注意什么?
提问2:本节课重点利用了什么相等关系,来列的方程?
教师组织学生就本节课所学知识进行小结。
学生进行总结归纳、回答交流,相互完善补充。
教师关注:学生能否提炼出本节课的重点内容,如果不能,教师则提出具体问题,引导学生思考、交流。
引导学生对本节所学知识进行归纳、总结和梳理,以便于学生掌握和运用。
布置作业:
第93页第3题
数学初中教案【第四篇】
一、彻底搞清定义、定理、公理的真正含义
要想让学生写出思路清晰、层次分明的几何证明题的书写过程。首先最关键的一步就是要让学生彻底分清定义、定理、公理的题设和结论,真正理解其真实含义。只有这样,学生才能在以后的证明过程中,正确地利用它来证明相关结论。反之,如果你对定理的内容都没有真正理解,而是含糊其词,是是而非,或者本身就不知道有这样一个定理,那么你在以后的证明过程中,就不能正确地应用这个定理或者就不知道应用这个定理,整个证明过程就会陷入僵局。同时,我们还要让学生把握清楚定理的内涵,不能对定理的理解有模棱两可、含糊其词之感。例如,在学习等腰三角形的“三线合一”这一定理时,有些同学就理解不清,没有真正掌握其含义,甚至自己都感到有些困惑,致使在应用时出现一些小错误。我们都知道这个定理的正确用法是,在知道一个三角形是等腰三角形的大前提下,
其中“顶角的平分线”、“底边上的高”、“底边上的中线”三者知道一个,就可以得到另外两个结论。而有些没有真正理解其含义的同学就这样写道:(如图)
在△ABC中
∵AB=AC,AD⊥BC,BD=CD∴AD平分∠BAC
显然,这是不恰当的。原因就在于没有真正理解等腰三角形“三线合一”这一定理的内涵,应该去掉“的任一个。
二、加强三种几何语言的教学,特别是符号语言
几何语言包括三种不同形式的语言,即文字语言、图形语言、符号语言。对定理、公理的教学,我们老师不仅要让学生掌握定理对应的三种语言,还要培养学生对三种语言的转换能力。
由于三种语言
AD⊥BC”和“BD=CD”中的不同特点,在教学中各自发挥的作用也不相同。在三种语言中,符号语言是几何初学者最难掌握的一种,也是逻辑推理必备的。能力基础,因为考试中的证明题要用符号语言来体现。
我们老师在教学中如何让学生掌握好符号语言呢?在教学某一定理时,首先要让学生在理解的基础上,结合图形能用自己的语言进行描述再引导学生如何用符号语言进行“翻译”。的点到角的两边的距离相等”这一定理时。
(即文字语言),然后
例如在教学“角平分线上首先,我们老师要引导学生用什么样的方法证明这一定理,然后引导学生用自己的话表述这一性质,最后训练学生如何用符号来描述这一定理。这一定理的题设中,关键的两点即“角平分线”和“角平分线上的点到角的两边的距离”,如何用符号表示呢呢?(如图),
?结论中的“相等”,又如何用符号表示
题设中的“两点”可以这样用符号表示:∠1=∠2,CD⊥AO,CE⊥BO,结论中的“相等”可表示为:CD=CE
如果我们以后用到这一性质时,就可以这样写了:∵∠1=∠2,CD⊥AO,CE⊥BO∴CD=CE
三、理清思路,做到层次分明
我们老师在批改学生的证明题时,常常会发现这样的现象:为了证明某一结论,假设需要通过两步“同等身份”的推理,
才能得出最后的结论,个别学生在证明时,往往两步的推理互相穿插,第一步证明的推理在第二步中有出现,第二步的推理在第一步中也有体现。也就是说,思路不清,条理不清晰。出现这种现象的原因还是在书写过程之前,思路不清、层次不分明。针对这种现象,我们老师要帮助学生细细分析清楚后,再让学生书写过程。例如有这样一道证明题:(如图)
已知:如图,矩形ABCD的对角线AC、BD相交于点O,BE‖AC,CE‖BD。
求证:四边形OBEC是菱形。
针对这一题目,引导学生通过分析后,发现这个题目只要证明“两大块”就行了,即证“OB=OC”和“四边形
OBEC为平行四边形”,然后再引导学生这“两大块”又分别怎样用符号语言表述就可以了。当然,这“两大块”的证明不分先后。通过这样的分析后,学生在书写时就不会出现证明“OB=OC”时出现“BE‖AC”这样的“不速之客”了。
四、掌握几何证明题常用的分析方法
几何证明题常用的分析方法有综合法和分析法,
另外还有一种就是分析法和综合法的结合使用。那么我们在证明某一结论时,到底用上述三种方法的哪一种呢?这要根据具体的问题,具体的情况进行决定。有时一个待证的结论分析法也可以,综合法也可以,都比较容易找到解决问题的思路,但有时一个待证的结论,这两种方法都不奏效,都不容易找到解决问题的方法,这时我们不妨把这两种方法结合起来使用,或许能找到“突破点”。因此,我们老师要让学生在解决证明题的过程中,自己要注意总结和反思,灵活掌握上述的三种方法。只有这样才能在寻求解决问题方案的过程中游刃有余。
五、多鼓励学生
刚刚学习几何证明题书写的学生,在书写的过程中肯定要或多或少地出现这样或那样的错误。我们老师在对待这一问题时,不要急躁,要耐心地对学生进行讲解和引导,多鼓励、多表扬他们。不理想的推理步骤要不断改进,同时引导学生自己多领悟多反思一下。这样,学生就不会失去这方面的信心,他们会做得越来越好。
总之,对学生几何证明题书写的教学,我们老师要有足够的耐心,采取不同的教学思路和方法,引导和鼓励学生循序渐进地掌握正确书写的方法和技巧。只有这样,学生才能书写出思路清晰、层次分明的几何证明题书写过