神经网络设计范例(优质4篇)
【前言导读】这篇优秀范文“神经网络设计范例(优质4篇)”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!
神经网络设计【第一篇】
关键词Matlab;RBF神经网络;仿真试验
人工神经网络(ANN-Artificial Neural Network)是一种与传统计算机系统不同的信息处理工具,具有人脑的某些功能特征,可用来解决模式识别与人工智能中用传统方法难以解决的问题。神经网络具有高度的自学习、自组织和自适应能力,通过学习和训练网络模型的输入、输出数据就可以获得网络的权值和结构,从而得出隐含在输入、输出数据中的关系。这种关系隐含在神经网络内部,它不需要知道具体的精确模型,只需用神经网络就能逼近输入和输出之间的多维非线性特性,从而建立输入与输出之间的关系,这种非线性映射能力在人工智能、模式识别、信息处理等工程领域得到了广泛的应用。
随着神经网络理论研究和实际应用的不断深入,《人工神经网络》课程逐渐受到较多高校的重视,并将其列入教学计划,成为电气信息类学科的一门专业选修课。但《人工神经网络》课程的理论性非常强,对本科生的教学具有一定的难度。作为入门课程,本科生的教学重点应放对各种网络模型的结构和特点的理解,并结合应用实例,使学生能够获取一些初步设计经验的基础上,掌握有关模型的用法和性能。因此,笔者以RBF神经网络为例设计仿真试验,通过实例增强学生的对神经网络模型的设计和仿真的认识,加深学生神经网络理论的理解。
一、RBF神经网络
RBF网络可以根据问题确定相应的网络拓扑结构,学习速度快,不存在局部最小问题。RBF网络的优良特性使得它正显示出比BP网络更强的生命力,正在越来越多的领域替代了BP网络。
RBF网络典型结构如图1所示。输入层节点只是传递输入信号到隐含层,隐含层节点由像高斯函数那样的辐射状作用函数构成,而输出层节点通常是简单的线性函数。隐含层节点中的作用函数对输入信号将在局部产生响应,也就是说,当输入信号靠近该函数的中央范围时,隐含层节点将产生较大的输出。由此可看出这种网络具有局部逼近能力,故径向基函数网络也称为局部感知场网络。
二、基于MATLAB的RBF神经网络设计与仿真
MATLAB神经网络工具箱为径向基网络提供了很多工具箱函数,它们对我们利用MATLAB进行径向基网络的设计、分析及实际应用有着不可替代的作用,这给用户带来了极大的方便。
下面以污闪风险预测模型为例来说明神经网络设计与仿真。预测模型采用三输入一输出的结构。输入向量为相对湿度RH、泄漏电流幅值Ih、泄漏电流三次谐波与基波的幅值之比δ,它们的大小是能够检测到的用于评判绝缘子污闪风险的主要参数;将绝缘子污闪的风险等级作为输出,输出取值分别为不报警(NA)、一般报警(GA)、危险报警(DA)等三个模糊量。对于绝缘子污闪风险等级NA、GA和DA,为了方便神经网络进行拟合建模,分别赋予一个量化的值1,2和3与之一一对应。
利用函数newrbe创建一个准确的径向基网络,该函数在创建RBF网络时,自动选择隐含层的数目,使得误差为0。在网络设计过程中,用不同的SPREAD值进行尝试,以确定一个最优值。SPREAD分别取1,2,3,4时得到不同的网络结构。将污闪风险等级的实际值和神经网络输出的结果对比,不同神经网络的验证结果如图3所示。可以看出,当SPREAD取1时,污闪风险的实际值与神经网络计算值之间的误差最小,网络性能达到最优,所以本论文预测网络的SPREAD选取1。
将试验中得到的600组数据预留20组数据作为检验样本,剩下的580组数据为RBF神经网络的训练样本,训练好的网络具有进行绝缘子污闪风险预测的能力。
三、结语
人工神经网络是一门理论性很强而又应用广泛的课程,已经应用各种电气设备信号预测和状态监测等领域,本科生由于数学基础的限制学习这门课程有一定的难度。高校要培养出高素质的工程应用型人才,应充分利用MATLAB平台将实验仿真教学与理论学习相结合,以促进学生对较难理解的理论知识的掌握。通过采用灵活多变的教学方式,培养学生的学习兴趣、激发学生的求知欲,从而达到启迪思维、拓展视野的目的,培养学生自学能力、独立解决问题的能力,为社会培养出具有工程创新能力的卓越工程师。
参考文献
[1] 李国勇。智能控制及其MATLAB实现[M].电子工业出版社,2006.
[2] 葛哲学,孙志强。神经网络理论与MATLAB R2007实现[M].电子工业出版社,2007(03).
[3] 王艳春,张金政,李绍静,王承明。基于Matlab的神经网络仿真试验设计[J].安徽农业科技,2012,40(29).
神经网络设计【第二篇】
关键词: Matlab; 串联BP; 多函数拟合; 自定义网络
中图分类号: TN911?34 文献标识码: A 文章编号: 1004?373X(2013)22?0014?03
0 引 言
BP(Back Propagation)神经网络是1986年由Rumelhart和McCelland提出的,它是一种误差按反向传播的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP神经网络具有非常强的非线性映射能力,能以任意精度逼近任意连续函数,因此在人工智能的许多领域都得到了广泛的应用,如函数逼近、模式识别、分类和数据压缩等领域[1?2]。由于目前一个神经网络只能同时对一个函数进行拟合,针对此本文提出了一直串联BP网络同时实现两个函数的拟合。
1 BP网络结构与学习算法
BP神经网络是目前应用最广泛的拓扑结构。BP模型是一种多层前向网络,这里采用的是三层BP神经网络模型,它由输入层、隐层和输出层组成,其结构如图1所示,分别为:
(1)输入层节点,其输出等于[xi]([i]=1,2,…,n),将控制变量值传输到隐含层;
(2)隐层节点[j],其输入[hj],输出[oj] 分别为:
[hj=i=1nwjxi-θj=i=1n+1wjxi]
[oj=f(hj)]
(3)输出节点[k],其输入[hk],输出[ok] 分别为:
[hk=j=1m+1wjkoj]
[ok=f(hk)]
式中:[k]=1,2,…,[l];[f]为传输函数。
BP算法分两步进行,即正向传播和反向传播[3]。
(1)正向传播
输入的样本从输入层经过隐单元逐层进行处理,通过所有的隐层之后,在传向输出层。在逐层处理的过程中,每一层神经元的状态只对下一层神经元的状态产生影响。在输出层把现行输出和期望输出进行比较,如果现行输出不等于期望输出,则进入反向传播过程。
(2)反向传播
反向传播时,把误差信号按原来正向传播的通路反向传回,并对每个隐层的各个神经元的权系数进行修改,以望误差信号趋向最小[4]。
2 BP网络的串联模型
神经网络串联即由两个或两个以上的神经网络串联所组成的新型网络模型,用于串联的各神经网络称为子神经网络。神经网络串联模型中的各子神经网络首尾相连,如图2所示。
假设总的神经网络由k个子神经网络串联而成,即第一个神经网络的输出作为第二个神经网络的输入,第二个神经网络的输出做为第三个神经网络的输入,以此类推下去。每一个子神经网络均由同类型的神经网络构成,在本文中,每一个子网络都采用最常用的BP神经网络,其子网络的构建都遵循现有的BP网络的构建形式,其基本的子网络结构采用三层模式,一个输入层,一个隐含层和一个输出层[5?6]。
通过Matlab神经网络工具箱的自定义的方法来实现两个子BP网络的串联。
部分程序如下所示:
net=network;
=2;
=6;
=[1;1;1;1;1;1];
=[1 0;0 0;0 0;0 1;0 0;0 0];
=[ 0 0 0 0 0 0;1 0 0 0 0 0 ;0 1 0 0 0 0;
0 0 1 0 0 0 ;0 0 0 1 0 0;0 0 0 0 1 0];
=[ 0 0 1 0 0 1];
网络的拓扑结构如图3所示,其中每个子网络的隐含层节点为20个,传递函数为tansig,输出层采用线性函数[7]。
3 实验测试与分析
运用本串联BP网络在Matlab 2011的环境中同时对两个目标函数进行拟合。其目标函数为:
目标函数1:
[y=sin x]
目标函数2:
[y=x(1-16x2)e-x]
训练样本输入的设置:输入样本p={p1’,p1’}其中p1=[-1::1],目标向量T={t1’;t2’},其中t1= sin(3*pi*p1),t2= p1.*(1-1/6*p1.^2).*exp(-p1)。并加入噪声t3=sin(3*pi*p1)+*randn(size(p1));t4=t2+*randn(size(p1));T={[t3]’;[t4]’};对其进行训练仿真[8?10]。
网络的输出y包含了两个待拟合函数的拟合后的数据通过下面操作:
y1=cell2mat(y);
y2=y1’;
a=y2(1:1:41);
b=y2(42:1:82);
得到各自的拟合数据。
仿真结果如图4~图6所示。
由图4、图5仿真拟合曲线与待拟合函数曲线的比较可以看出此串联网络在通过加噪声的训练样本训练后能够很好的对两个待拟合函数进行拟合。由图6知在经过342次训练后其误差达到了 978。可见,通过此串联BP神经网络准确地拟合了待拟合函数曲线。
4 结 语
通过以上叙述可以看出本文设计的串联神经网络能够和好地对函数曲线进行拟合,为同时实现多函数曲线的拟合提供了新的方法。
参考文献
[1] 张雨浓,蔡炳煌。人工神经网络研究进展及过程[M].北京:电子工业出版社,2010.
[2] 蒋正金,汪晓东,端木春江。采用BP神经网络拟合光纤位移传感器特性曲线[J].微型机与应用,2012,31(4):67?69.
[3] 郭军。BP神经网络算法研究[D].武汉:华中科技大学,2005.
[4] 贾丽会,张修如。BP算法分析与改进[J].计算机技术与发展,2006,16(10):102?107.
[5] 刘华,高大启。RBF_LBF 串联神经网络的分类应用及其学习算法[J].计算机应用,2004,24(10):100?104.
[6] 邓秋香。神经网络串并联学习算法在B超图像识别中的应用[D].武汉:武汉理工大学,2008.
[7] 张德丰。Matlab神经网络应用设计[M].北京:机械工业出版社,2012.
[8] 陈小宇,乔翠兰,汪瑞祥,等。基于BP算法神经网络的物理实验曲线拟合[J].物理实验,2002,22(9):10?13.
[9] 李洁。BP网络的算法及在Matlab上的程序仿真[J].西安航空技术高等专科学校学报,2009,27(1):42?43.
[10] 张宝堃,张宝一。基于BP 神经网络的非线性函数拟合[J].电脑知识与技术,2012,27(8):6579?6583.
神经网络设计【第三篇】
关键词:智能决策支持系统;人工神经网络;模糊逻辑系统;模糊神经网络
中图分类号:TP183 文献标识码:B
文章编号:1004-373X(2008)02-084-03
Design and Realization of Intelligent Prediction Model Based on Fuzzy Neural Network
YAN Hongrui,MA Liju
(The PLA Military Represent Office in Factory,Xi′an,710043,China )[HJ1*3][HJ]
Abstract:For the predicting problems that the intelligent decision support system often encounters,according to the characters of artificial neural network and fuzzy logic system,a kind of fuzzy neural network model is ,the fuzzy logic system for realizing fuzzy prediction is expressed by the construction of artificial neural the fuzzy logic system is trained by associate studying last,the model of fuzzy neural network has been proved by practice and realized in program.
Keywords:intelligent decision support system;artificial neural network;fuzzy logic system;fuzzy neural network
智能决策支持系统\[1\](Intelligent Decision Support System,IDSS)是以管理科学、运筹学、控制论和行为科学为基础,以计算机技术、仿真技术和信息技术为手段,面对半结构化的决策问题,辅助支持中、高层次策者决策活动的、具有智能作用的计算机网络系统。神经网络和模糊逻辑是智能决策支持技术应用于信息管理后迅速发展的智能技术,在决策预测领域颇有成效。本文根据人工神经网络和模糊逻辑的特点,设计一种模糊神经网络完成决策支持系统中的信息预测功能,较好地解决了决策支持系统的实用化问题。
1 人工神经网络与模糊逻辑系统介绍
人工神经网络
2 模糊神经网络模型的设计与实现
模糊神经网络模型的选定
由以上介绍可知,在预测领域中,模糊逻辑具有较强的结构性知识表达能力,能较好地表示用语言描述的经验知识、定性知识,但通常不具备学习能力,只能主观地选择隶属度函数和模糊规则。神经元网络具有强大的自学习能力和数据直接处理能力,但网络内部的知识表达方式不清楚,在学习时只能从任意初始条件开始,其学习的结果完全取决于训练样本。
本文将神经网络的学习算法与模糊逻辑理论结合起来,利用正规化模糊神经网络(NFNN)实现模糊逻辑系统;用模糊规则表示神经网络,用预先的专家知识以模糊规则的形式初始化,用神经网络的学习算法训练模糊系统,然后结合神经计算的特点实现推理过程。
模糊神经网络模型的结构
本文采用一个3层的前向网络(如图3所示)来构造模糊系统(见图3)。这样模糊神经网可以用通用的三层模糊感知器来表示,该模糊感知器定义如下:
(1) U=∪i∈NUi是一个非零的神经元集合,N={1,2,3}是U的索引值集合,对所有的i,j∈N且满足为输入层,为规则(隐含)层,为输出层;И
模糊神经网络的编程实现
系统主要通过4个类来描述神经网络模型。他们是神经元类、神经元权类、神经元层类、神经元网络类。神经元类的作用是模拟单个神经元的数据结构和计算过程。神经元权值类用于保存神经元之间连接的权值。神经元层类的作用是生成每一层的神经元,并进行每一层的计算,他接受神经元网络类的调用,并调用神经元类的函数实现每一层的计算。神经元网络类定义了整个神经网络结构和所有的网络操作,他提供公共函数给应用程序调用,他的计算函数调用神经元层类和神经元类的函数进行网络计算。
通过4个类的描述,将建立和运行神经网络所需的主要数据结构和计算过程做了定义。当程序运行时,首先由应用程序生成神经网络类实例,然后此网络类实例进行层类实例的建立,接下来层类实例建立每层的神经元实例。同时,神经网络类也从外部文件读取网络结构的连接和权值数据,供建立网络时使用。
3 模糊神经网络的预测验证
模糊神经网络的预测验证如表1所示。
4 结 语
模糊神经网络模型把神经网络的学习算法与模糊逻辑理论相结合,将模糊系统用类似于神经网络的结果表示,再用相应的学习算法训练模糊系统,通过样本的学习算法提高网络性能。此模型曾经用于某军事模拟对抗系统中战场态势的预测,成功地实现了该模型的预测功能。但是模糊推理机是基于知识库中的知识和规则进行推理的,如何建立具有专家经验和知识的知识库,是模糊神经网络模型应用中的难点和重点。如何建立实用的知识库
以及决策过程中存在许多不确定性因素等问题还有待于进一步研究。
参 考 文 献
[1]George M 世纪的决策支持系统[M].朱岩,译。北京:清华大学出版社,2002.
[2]Martin T Hagan,Howard B Demuth,Mark 神经网络设计\[M\].戴葵,译。北京:机械工业出版社, 2003.
[3]刘有才。模糊专家系统原理与设计[M].北京:北京航空航天大学出版社,2003.
[4]张乃尧,阎平凡。神经网络与模糊控制[M].北京:清华大学出版社,1998.
[5]高隽。人工神经网络原理及仿真实例[M].北京:机械工业出版社, 2003.
神经网络设计【第四篇】
Abstract: An artificial neural network (ANN) model about thermodynamic parameters evaluation of blasting agent was set being trained by a train-set containing 6 compositions, the BP model was used to predict the thermodynamic parameters of blasting agent, and the predicted values were compared with that of results showed that the most prediction is %, and the ANN model was capable of making accurate predictions of explosion parameters of blasting agent.
关键词: 人工神经网络;膨胀石墨;燃爆剂;预测
Key words: artificial neural network;expanded graphite;blasting agent;prediction
中图分类号:E91文献标识码:A文章编号:1006-4311(2010)31-0176-02
0引言
膨胀石墨用燃爆剂的配方设计直接关系到膨胀石墨成烟效果及干扰效能[1]。近年来,国内有关膨胀石墨的研究多针对于其自身的性能,而有关燃爆剂配方的研究很少,且多停留于重复试验上,研究周期长且耗时耗力。因此寻找一种科学合理且操作方便的方法来预测和指导膨胀石墨用燃爆剂配方,是本领域关注的一个问题。
人工神经网络(ANN)是一种模拟人脑功能的数据和知识等信息的处理加工系统,目前已在函数逼近、模式识别、智能控制、组合优化和仿真预测等领域取得成功应用,成为人工智能的重要发展方向[2]。神经网络技术通过模拟人类认知的微结构,把输入矢量和输出矢量训练成网络并以此逼近一个函数,避开了燃烧理论的建模与运算,有利于指导烟火药剂的合成和燃烧性能预测[3]。
本文采用一种改进的反向传播学习算法:选用多层前馈型神经网络结构,采用改进的BP算法建立网络构架,确定网络学习方式并进行训练仿真,模拟燃爆剂燃爆反应并预测燃烧体系产物的特性参数,并对仿真结果与试验结果进行对比研究。
1配方选择
膨胀石墨用燃爆剂是一种以高热值可燃物与强氧化剂为基本成分,根据实际需要加入某种添加剂的多组分混合物,在文献[4]中作者已对相关配方利用正交试验进行了优化,得到了较好的结果。本文采用该文献中已有的燃爆剂配方组分(NaNO3、KClO4、Mg和C49H78O20)和9组数据来验证神经网络在配方预测中应用的可行性。在燃爆剂配方中,KClO4作为氧化剂,具有分解时吸热较少,熔点适中,在反应界面易产生液-气组分,有利于反应的自发进行及反应的持续;Mg作为可燃剂,具有燃烧热大、燃烧温度高,能够提供可膨胀石墨膨化所需的能量及高温,且蒸汽压大,能使燃爆剂燃烧反应进行得更迅速、完全,更容易引起NaNO3烟火药的爆炸分解;C49H78O20作为粘结剂,具有较高的燃烧热(5038kJ/kg),可提高燃爆剂的热能释放量,还具有耐酸性好、与可膨胀石墨相容性好等特点。
2神经网络算法实现
在配方设计中,神经网络算法所要解决的问题是在分析已有的燃爆剂配方组成及其性能参数基础上,对其他配比不同的燃爆剂进行性能预测。由于已知的配方为9组,未来保证训练的精度和测试的完整性,所以选择其中6组配方为训练样本,剩余3组为测试样本。
神经网络构建依据所要解决问题的特点,BP网络的构架由一个输入层、一个隐含层及一个输出层组成。其中输入层为6×4的矩阵,表示6组配方中四种成分(NaNO3,KClO4,Mg,C49H78O20)的质量分数,每组配方的试验测试值设为期望输出矩阵;隐含层的神经元个数为20,神经元传递函数选定为tansigmoid函数(tansig());设定输出层的神经元个数为2,分别代表体系的绝热燃烧温度和产物中固体质量分数。神经元传递函数为纯线性函数(purelin()),据此可以得到用于仿燃爆剂燃爆反应特征输出的BP网络结构(见图1)。图中Pl表示输入矩阵,w1,1表示输入到神经元的连接权值矩阵,wL2,1表示神经元到输出的连接权值矩阵,θ1、θ2表示神经元的阈值,n1、n2表示神经元的加权求和,y=tansigw1,1P+θ1表示神经元的输出,y2=purelinwL2,1y+θ2表示输出层的模拟计算结果[5]。
对于上述BP网络,假设神经元输入节点xi,隐含层节点yj,输出节点zl,输入节点和隐含层节点的权值为wji,隐含层节点和输出节点间的权值为vlj,当输出节点的期望值为时El(l=1,2),模型的计算式如下。
传递函数 f(x)=tansig(x)= (1)
隐层节点的输出y=fw-θj(2)
输出节点的计算输出 zl=fw-θl (3)
权值修正 w(k+1)=w(k)+w=w(k)+x (4)
v(k+1)=v(k)+v=v(k)+y(5)
式中:为学习速度;隐层节点误差=yv,v表示输出节点zl的误差通过权值vj向节点yj反向传播成为隐层节点误差;输出节点误差=-(El-zl)z。
收敛性判定H=(E-z)=E-fvy-θ=E-fvfwx-θ-θ(6)
当H小于设定误差时,网络训练完成,从而建立了输入到输出的定量数学模型,利用训练好的网络可对未知样本进行预测。
神经网络训练网络输入为6组NaNO3、KClO4、Mg和C49H78O20的不同配比的配方组成,期望函数为体系绝热燃烧温度和产物中固体质量分数的试验测试值(见表1)。
采用Levenberg―Marquardt方法[6]训练网络,当计算量达到100次时,仿真结果与实验值的相对误差接近10-4,据此认为算法的精度和计算速度满足使用要求。
3结果与讨论
为了评价网络模型预测结果和试验结果的一致性,抽取已测定绝热燃烧温度和产物中固体的质量分数的3组配方并对其进行网络计算(见表2)。3组配方的仿真计算结果及其与试验结果的误差对比如图2、图3所示。
从图2、图3可以看出,利用人工神经网络算法建立的自适应非线性数学模型能较好地模拟燃爆剂燃爆热力学参数,模拟值与试验值非常接近,绝热燃烧温度和产物中固体质量分数的最大模拟误差分别为%和%,精度较高,较好地模拟了燃爆剂燃爆热力学性能。
4结论
利用6组燃爆剂配方的配比作为输入矩阵和期望输出矩阵,建立了预测其燃爆热力学参数的BP神经网络定量模型,通过3组配方的预测结果和相应的试验测试值进行了对比分析,结果表明:
①人工神经网络算法对燃爆剂燃爆热力学参数的预测,有效地避开了热力学模型的假设和参数的设置,结合Matlab神经网络工具箱对目标函数的连续输出,实现了对期望函数(试验数据)的无限逼近;
②仿真结果与试验结果的误差最大为%,预测精度较高,神经网络可作为燃爆剂配方设计和热力学参数预测的工具。
参考文献:
[1]伍士国。可膨胀石墨瞬时膨化及衰减8毫米波的动态性能研究[D].南京:南京理工大学,2004:12-17.
[2]Hagan M T,Demuth H network design[M].Boston:PWS Publishing Company,1996:1-36.
[3]Conkling J of pyrotechnics[M].NewYork:Marcel Dekker,Inc.,1985:238-287.
[4]张倩,张勇,闫军,焦清介。膨胀石墨用燃爆剂的配方优化设计[J].火工品,2008,5:28-30.
[5]崔庆忠,焦清介,任慧,杨荣杰。用人工神经网络预测黑火药燃烧性能[J].北京理工大学学报,2007,27(6):541-545.