首页 > 实用范文 > 其他范文 >

数学必修四知识点优秀4篇

网友发表时间 1018491

【引言】阿拉题库漂亮网友为您分享整理的“数学必修四知识点优秀4篇”范文资料,以供参考学习,希望这篇文档资料对您有所帮助,喜欢就下载分享给朋友吧!

数学必修四知识点【第一篇】

1.向量可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。

2.规定若线段AB的端点A为起点,B为终点,则线段就具有了从起点A到终点B的方向和长度。具有方向和长度的线段叫做有向线段。

3.向量的模:向量的大小,也就是向量的长度(或称模)。向量a的模记作|a|。

注:向量的模是非负实数,是可以比较大小的。因为方向不能比较大小,所以向量也就不能比较大小。对于向量来说“大于”和“小于”的概念是没有意义的。

4.单位向量:长度为一个单位(即模为1)的向量,叫做单位向量。与向量a同向,且长度为单位1的向量,叫做a方向上的单位向量,记作a0。

5.长度为0的向量叫做零向量,记作0。零向量的始点和终点重合,所以零向量没有确定的方向,或说零向量的方向是任意的'。

向量的计算

1.加法

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c)。

2.减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=的反向量为0

加减变换律:a+(-b)=a-b

3.数量积

定义:已知两个非零向量a,b。作OA=a,OB=b,则∠AOB称作向量a和向量b的夹角,记作θ并规定0≤θ≤π

向量的数量积的运算律

a·b=b·a(交换律)

(λa)·b=λ(a·b)(关于数乘法的结合律)

(a+b)·c=a·c+b·c(分配律)

向量的数量积的性质

a·a=|a|的平方。

a⊥b〈=〉a·b=0。

|a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)

高中学好数学的方法是什么

数学需要沉下心去做,浮躁的人很难学好数学,踏踏实实做题才是硬道理。

数学要想学好,不琢磨是行不通的,遇到难题不能躲,研究明白了才能罢休。

数学最主要的就是解题过程,懂得数学思维很关键,思路通了,数学自然就会了。

数学不是用来看的,而是用来算的,或许这一秒没思路,当你拿起笔开始计算的那一秒,就豁然开朗了。

数学题目不会做,原因之一就是例题没研究明白,所以数学书上的例题绝对不要放过。

数学函数的奇偶性知识点

1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).

正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式。(奇偶性是函数定义域上的整体性质).

2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式。

数学必修四知识点【第二篇】

不等式

不等关系

了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景。

(2)一元二次不等式

①会从实际情境中抽象出一元二次不等式模型。

②通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的`联系。

③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图。

(3)二元一次不等式组与简单线性规划问题

①会从实际情境中抽象出二元一次不等式组。

②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。

③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。

(4)基本不等式:

①了解基本不等式的证明过程。

②会用基本不等式解决简单的(小)值问题圆的辅助线一般为连圆心与切线或者连圆心与弦中点

数学必修四知识点【第三篇】

a(1)=a,a(n)为公差为r的等差数列

通项公式:

a(n)=a(n—1)+r=a(n—2)+2r=...=a[n—(n—1)]+(n—1)r=a(1)+(n—1)r=a+(n—1)r。

可用归纳法证明。

n=1时,a(1)=a+(1—1)r=a。成立。

假设n=k时,等差数列的通项公式成立。a(k)=a+(k—1)r

则,n=k+1时,a(k+1)=a(k)+r=a+(k—1)r+r=a+[(k+1)—1]r。

通项公式也成立。

因此,由归纳法知,等差数列的通项公式是正确的。

求和公式:

S(n)=a(1)+a(2)+...+a(n)

=a+(a+r)+...+[a+(n—1)r]

=na+r[1+2+...+(n—1)]

=na+n(n—1)r/2

同样,可用归纳法证明求和公式。

a(1)=a,a(n)为公比为r(r不等于0)的等比数列

通项公式:

a(n)=a(n—1)r=a(n—2)r^2=...=a[n—(n—1)]r^(n—1)=a(1)r^(n—1)=ar^(n—1)。

可用归纳法证明等比数列的通项公式。

求和公式:

S(n)=a(1)+a(2)+...+a(n)

=a+ar+...+ar^(n—1)

=a[1+r+...+r^(n—1)]

r不等于1时,

S(n)=a[1—r^n]/[1—r]

r=1时,

S(n)=na。

同样,可用归纳法证明求和公式。

符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。

轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。

轨迹方程就是与几何轨迹对应的代数描述。

一、求动点的轨迹方程的基本步骤

⒈建立适当的坐标系,设出动点M的坐标;

⒉写出点M的集合;

⒊列出方程=0;

⒋化简方程为最简形式;

⒌检验。

二、求动点的轨迹方程的。常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

译法:求动点轨迹方程的一般步骤

①建系——建立适当的坐标系;

②设点——设轨迹上的任一点P(x,y);

③列式——列出动点p所满足的关系式;

④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

⑤证明——证明所求方程即为符合条件的动点轨迹方程。

高考数学必修四学习方法

1、先看笔记后做作业。

有的同学感到,老师讲过的,自己已经听得明明白白了。但是为什么你这么做有那么多困难呢?原因是学生对教师所说的理解没有达到教师要求的水平。

因此,每天做作业之前,我们必须先看一下课本的相关内容和当天的课堂笔记。能否如此坚持,常常是好学生与差学生的最大区别。尤其是当练习不匹配时,老师通常没有刚刚讲过的练习类型,因此它们不能被比较和消化。如果你不重视这个实施,在很长一段时间内,会造成很大的损失。

2、做题之后加强反思。

学生一定要明确,现在正做着的题,一定不是考试的题目。但使用现在做主题的解决问题的思路和方法。因此,我们应该反思我们所做的每一个问题,并总结我们自己的收获。

要总结出:这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串。日复一日,建立科学的网络系统的内容和方法。俗话说:有钱难买回头看。做完作业,回头细看,价值极大。这一回顾,是学习过程中一个非常重要的环节。

高考数学必修四学习技巧

1、科学的预习方法

预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习后将课本的例题及老师要讲授的习题提前完成,还可以培养自己的自学能力,与老师的方法进行比较,可以发现更多的方法与技巧。总之,这样会使你的听课更加有的放矢,你会知道哪些该重点听,哪些该重点记。

2、科学的听课方式

听课的过程不是一个被动参预的过程,要全身心地投入课堂学习,耳到、眼到、心到、口到、手到。还要想在老师前面,不断思考:面对这个问题我会怎么想?当老师讲解时,又要思考:老师为什么这样想?这里用了什么思想方法?这样做的目的是什么?这个题有没有更好的方法?问题多了,思路自然就开阔了。

3、科学的记录笔记

记问题——将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。

记疑点——对老师在课堂上讲的内容有疑问应及时记下,这类疑点,有可能是自己理解错造成的,也有可能是老师讲课疏忽大意造成的,记下来后,便于课后与老师商榷。

记方法——勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。

记总结——注意记住老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找存在问题、找到规律,融会贯通课堂内容都很有作用。

数学必修四知识点【第四篇】

一、夯实数学基础的方法

首先课堂紧跟老师,认真听每一节课,记好课堂笔记,有些学生喜欢自己课后自学,课堂不爱听讲,这是极错误的,因为老师对于高考的了解和对知识的掌握,远远胜过我们自学,紧跟老师是打好基础最关键的一步。

对课本基础知识的学习,我们强烈建议大家使用思维导图,可以把课本上的'知识都画成树状层,这样更容易理解、记忆,这样知识点不再是孤立而是成了一个网,这比光看书效果要好很多很多。

二、数学正确的做题方法

想学好数学,大量做题确实很有必要,但你真的会做题吗?多数同学虽然也做了大量的题目,但成绩还是不好,核心原因就是做题忽略了最重要的一步,那就是总结反思。每做完一道题目,大家还需要总结一下,问一下自己下面这些问题:它考查了哪些知识、自己有没有掌握、题目的解题思路在哪里、突破口是什么、属于哪种题型、此类题型有什么共同的套路、此类题型应该用什么方法来解答。只有多问自己几个为什么,你才能真正吃透一道题,达到做一道题会一类题。

做题并不是越多越好,要知道题海战术只是手段,我们最终的目的还是通过做题加深对知识的理解,掌握解题套路,提高做题速度,如果做题不总结,你刷再多题效果也不会明显。

相关推荐

热门文档

65 1018491