高中必修四数学知识点总结精编3篇
【引言】阿拉文库漂亮网友为您分享整理的“高中必修四数学知识点总结精编3篇”范文资料,以供参考学习,希望这篇文档资料对您有所帮助,喜欢就下载分享给朋友吧!
高中必修四数学知识点总结1
1.知识网络图
复数知识点网络图
2.复数中的难点
(1)复数的向量表示法的运算。对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难。对此应认真体会复数向量运算的几何意义,对其灵活地加以证明。
(2)复数三角形式的乘方和开方。有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练。
(3)复数的辐角主值的求法。
(4)利用复数的几何意义灵活地解决问题。复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会。
3.复数中的重点
(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点。
(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角。复数有代数,向量和三角三种表示法。特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容。
(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质。复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容。
(4)复数集中一元二次方程和二项方程的解法。
高中必修四数学知识点总结2
1.“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2.“相等”关系(5≥5,且5≤5,则5=5)
实例:设A={x|x2-1=0}B={-1,1}“元素相同”
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
①任何一个集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同时BíA那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
高中必修四数学知识点总结3
集合的运算
运算类型交 集并 集补 集
定义域 R定义域 R
值域>0值域>0
在R上单调递增在R上单调递减
非奇非偶函数非奇非偶函数
函数图象都过定点(0,1)函数图象都过定点(0,1)
注意:利用函数的单调性,结合图象还可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,则 ; 取遍所有正数当且仅当 ;
(3)对于指数函数 ,总有 ;
对数函数
(一)对数
1.对数的概念:
一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式)
说明:○1 注意底数的限制 ,且 ;
○2 ;
○3 注意对数的书写格式。
两个重要对数:
○1 常用对数:以10为底的对数 ;
○2 自然对数:以无理数 为底的对数的对数 .
指数式与对数式的互化
幂值 真数
= N = b
底数
指数 对数
(二)对数的运算性质
如果 ,且 , , ,那么:
○1 + ;
○2 - ;
○3 .
注意:换底公式: ( ,且 ; ,且 ; ).
利用换底公式推导下面的结论:(1) ;(2) .
(3)、重要的公式 ①、负数与零没有对数; ②、 , ③、对数恒等式
(二)对数函数
1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞).
注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如: , 都不是对数函数,而只能称其为对数型函数。
○2 对数函数对底数的限制: ,且 .
2、对数函数的性质:
定义域x>0定义域x>0
值域为R值域为R
在R上递增在R上递减
函数图象都过定点(1,0)函数图象都过定点(1,0)
(三)幂函数
1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数。
2、幂函数性质归纳。
(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);
(2) 时,幂函数的图象通过原点,并且在区间 上是增函数。特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;
(3) 时,幂函数的图象在区间 上是减函数。在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴。
第四章 函数的应用
一、方程的根与函数的零点
1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。
2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。
即:方程 有实数根 函数 的图象与 轴有交点 函数 有零点。
3、函数零点的求法:
○1 (代数法)求方程 的实数根;
○2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点。
4、二次函数的零点:
二次函数 .
(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点。
(2)△=0,方程 有两相等实根,二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点。
(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点。
5.函数的模型