高二数学知识点总结精编5篇
【导言】此例“高二数学知识点总结精编5篇”的文档资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
高二数学知识点总结1
用样本的数字特征估计总体的数字特征
1、本均值:
2、样本标准差:
3.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。在随机抽样中,这种偏差是不可避免的。
虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。
4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变
(2)如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍
(3)一组数据中的值和最小值对标准差的影响,区间的应用;
“去掉一个分,去掉一个最低分”中的科学道理
高二数学知识点总结2
一、集合、简易逻辑(14课时,8个)
1、集合;
2、子集;
3、补集;
4、交集;
5、并集;
6、逻辑连结词;
7、四种命题;
8、充要条件。
二、函数(30课时,12个)
1、映射;
2、函数;
3、函数的单调性;
4、反函数;
5、互为反函数的函数图象间的关系;
6、指数概念的扩充;
7、有理指数幂的运算;
8、指数函数;
9、对数;
10、对数的运算性质;
11、对数函数。
12、函数的应用举例。
三、数列(12课时,5个)
1、数列;
2、等差数列及其通项公式;
3、等差数列前n项和公式;
4、等比数列及其通顶公式;
5、等比数列前n项和公式。
四、三角函数(46课时,17个)
1、角的概念的推广;
2、弧度制;
3、任意角的三角函数;
4、单位圆中的三角函数线;
5、同角三角函数的基本关系式;
6、正弦、余弦的诱导公式;
7、两角和与差的正弦、余弦、正切;
8、二倍角的正弦、余弦、正切;
9、正弦函数、余弦函数的图象和性质;
10、周期函数;
11、函数的奇偶性;
12、函数的图象;
13、正切函数的图象和性质;
14、已知三角函数值求角;
15、正弦定理;
16、余弦定理;
17、斜三角形解法举例。
五、平面向量(12课时,8个)
1、向量;
2、向量的加法与减法;
3、实数与向量的积;
4、平面向量的坐标表示;
5、线段的定比分点;
6、平面向量的数量积;
7、平面两点间的距离;
8、平移。
六、不等式(22课时,5个)
1、不等式;
2、不等式的基本性质;
3、不等式的证明;
4、不等式的解法;
5、含绝对值的不等式。
七、直线和圆的方程(22课时,12个)
1、直线的倾斜角和斜率;
2、直线方程的点斜式和两点式;
3、直线方程的一般式;
4、两条直线平行与垂直的条件;
5、两条直线的交角;
6、点到直线的距离;
7、用二元一次不等式表示平面区域;
8、简单线性规划问题;
9、曲线与方程的概念;
10、由已知条件列出曲线方程;
11、圆的标准方程和一般方程;
12、圆的参数方程。
高二数学知识点总结3
1.有向线段的定义
线段的端点A为始点,端点B为终点,这时线段AB具有射线AB的方向。像这样,具有方向的线段叫做有向线段。记作:.
2.有向线段的三要素:有向线段包含三个要素:始点、方向和长度。
3.向量的定义:(1)具有大小和方向的量叫做向量。向量有两个要素:大小和方向。
(2)向量的表示方法:①用两个大写的英文字母及前头表示,有向线段来表示向量时,也称其为向量。书写时,则用带箭头的小写字母,,,来表示。
4.向量的长度(模):如果向量=,那么有向线段的长度表示向量的大小,叫做向量的长度(或模),记作||.
5.相等向量:如果两个向量和的方向相同且长度相等,则称和相等,记作:=.
6.相反向量:与向量等长且方向相反的向量叫做的相反向量,记作:-.
7.向量平行(共线):如果两个向量方向相同或相反,则称这两个向量平行,向量平行也称向量共线。向量平行于向量,记作//.规定: //.
8.零向量:长度等于零的向量叫做零向量,记作:.零向量的方向是不确定的,是任意的。由于零向量方向的特殊性,解答问题时,一定要看清题目中是零向量还是非零向量。
9.单位向量:长度等于1的向量叫做单位向量。
10.向量的加法运算:
(1)向量加法的三角形法则
11.向量的减法运算
12、两向量的和差的模与两向量模的和差之间的关系
对于任意两个向量,,都有|||-|||||+||.
13.数乘向量的定义:
实数和向量的乘积是一个向量,这种运算叫做数乘向量,记作。
向量的长度与方向规定为:(1)||=|
(2)当0时,与方向相同;当0时,与方向相反。
(3)当=0时,当=时,=.
14.数乘向量的运算律:(1))= (结合律)
(2)(+) =+(第一分配律)(3)(+)=+.(第二分配律)
15.平行向量基本定理
如果向量,则//的充分必要条件是,存在唯一的实数,使得=.
如果与不共线,若m=n,则m=n=0.
16.非零向量的单位向量:非零向量的单位向量是指与同向的单位向量,通常记作。
=||,即==(,)
17.线段中点的向量表达式
点M是线段AB的中点,O是平面内任意一点,则=(+).
18.平面向量的直角坐标运算:如果=(a1,a2),=(b1,b2),则
+=(a1+b1,a2+b2);-=(a1-b1,a2-b2);=(a1,a2).
19.利用两点表示向量:如果A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1).
20.两向量相等和平行的条件:若=(a1,a2),=(b1,b2) ,则
=a1=b1且a2=b2.
//a1b2-a2b1=0.特别地,如果b10,b20,则// =.
21.向量的长度公式:若=(a1,a2),则||=.
22.平面上两点间的距离公式:若A(x1,y1),B(x2,y2),则||=.
23.中点公式
若点A(x1,y1),点B(x2,y2),点M(x,y)是线段AB的中点,则x=,y= .
24.重心公式
在△ABC中,若A(x1,y1),B(x2,y2),A(x3,y3),,△ABC的重心为G(x,y),则
x=,y=
25.(1)两个向量夹角的取值范围是[0,p],即0,p.
当=0时,与同向;当=p时,与反向
当= 时,与垂直,记作。
(3)向量的内积定义:=||||cos.
其中,||cos叫做向量在向量方向上的正射影的数量。规定=0.
(4)内积的几何意义
与的内积的几何意义是的模与在方向上的正射影的数量,或的模与在 方向上的正射影数量的乘积
当0,90时,0;=90时,
90时,0.
26.向量内积的运算律:
(1)交换率
(2)数乘结合律
(3)分配律
(4)不满足组合律
27.向量内积满足乘法公式
29.向量内积的应用:
高中数学必修二知识点总结:空间直线与直线之间的位置关系4
异面直线定义:不同在任何一个平面内的两条直线
异面直线性质:既不平行,又不相交。
异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线
异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。
求异面直线所成角步骤:
A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。B、证明作出的角即为所求角C、利用三角形来求角
(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。
(8)空间直线与平面之间的位置关系
直线在平面内——有无数个公共点。
三种位置关系的符号表示:aαa∩α=Aaα
(9)平面与平面之间的位置关系:平行——没有公共点;αβ
相交——有一条公共直线。α∩β=b
2、空间中的平行问题
(1)直线与平面平行的判定及其性质
线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
线线平行线面平行
线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,
那么这条直线和交线平行。线面平行线线平行
(2)平面与平面平行的判定及其性质
两个平面平行的判定定理
(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行
(线面平行→面面平行),
(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。
(线线平行→面面平行),
(3)垂直于同一条直线的两个平面平行,
两个平面平行的性质定理
(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)
(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)
3、空间中的垂直问题
(1)线线、面面、线面垂直的定义
两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。
线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。
平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。
(2)垂直关系的判定和性质定理
线面垂直判定定理和性质定理
判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
面面垂直的判定定理和性质定理
判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。
4、空间角问题
(1)直线与直线所成的角
两平行直线所成的角:规定为。
两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。
两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。
(2)直线和平面所成的角
平面的平行线与平面所成的角:规定为。平面的垂线与平面所成的角:规定为。
平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。
求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。
在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,
在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。
(3)二面角和二面角的平面角
二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。
二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。
直二面角:平面角是直角的二面角叫直二面角。
两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角
求二面角的方法
定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角
垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角
必修二知识点总结:解三角形
(1)正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)应用
能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。
高中数学必修二知识点总结:数列
(1)数列的概念和简单表示法
了解数列的概念和几种简单的表示方法(列表、图象、通项公式).
了解数列是自变量为正整数的一类函数。
(2)等差数列、等比数列
理解等差数列、等比数列的概念。
掌握等差数列、等比数列的通项公式与前项和公式。
能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题。
了解等差数列与一次函数、等比数列与指数函数的关系。
高中数学必修二知识点总结:不等式
高中数学必修二知识点总结:不等关系
了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景。
(2)一元二次不等式
会从实际情境中抽象出一元二次不等式模型。
通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系。
会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图。
(3)二元一次不等式组与简单线性规划问题
会从实际情境中抽象出二元一次不等式组。
了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。
会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。
(4)基本不等式:
了解基本不等式的证明过程。
会用基本不等式解决简单的最大(小)值问题圆的辅助线一般为连圆心与切线或者连圆心与弦中点
高二数学知识点总结5
平面向量
戴氏航天学校老师总结加法与减法的代数运算:
(1)若a=(x1,y1 ),b=(x2,y2 )则a b=(x1+x2,y1+y2 ).
向量加法与减法的几何表示:平行四边形法则、三角形法则。
戴氏航天学校老师总结向量加法有如下规律:+= +(交换律); +( +c)=( + )+c (结合律);
两个向量共线的充要条件:
(1) 向量b与非零向量共线的充要条件是有且仅有一个实数,使得b= .
(2) 若=(),b=()则‖b .
平面向量基本定理:
若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,戴氏航天学校老师提醒有且只 有一对实数,,使得= e1+ e2