首页 > 工作范文 > 总结报告 >

高三数学知识点全总结范例(10篇)

网友发表时间 1906496

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“高三数学知识点全总结范例(10篇)”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

高三数学知识点全总结范文【第一篇】

(1)先看“充分条件和必要条件”

当命题“若p则q”为真时,可表示为p=q,则我们称p为q的充分条件,q是p的必要条件。这里由p=q,得出p为q的充分条件是容易理解的。

但为什么说q是p的必要条件呢?

事实上,与“p=q”等价的逆否命题是“非q=非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

(2)再看“充要条件”

回忆一下初中学过的“等价于”这一概念;如果从命题a成立可以推出命题b成立,反过来,从命题b成立也可以推出命题a成立,那么称a等价于b,记作a=b。“充要条件”的含义,实际上与“等价于”的含义完全相同。也就是说,如果命题a等价于命题b,那么我们说命题a成立的充要条件是命题b成立;同时有命题b成立的充要条件是命题a成立。

(3)定义与充要条件。

数学中,只有a是b的充要条件时,才用a去定义b,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

高三数学知识点全总结范文【第二篇】

牛顿运动定律(牛顿第一、第二、第三定律);。

力学的基本规律之:万有引力定律;。

动量守恒定律(四类守恒条件、方程、应用过程);。

功能基本关系(功是能量转化的量度)。

功能原理(非重力做功与物体机械能变化之间的关系);。

力学的基本规律之:机械能守恒定律(守恒条件、方程、应用步骤);。

简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用。

文档为doc格式。

高三数学知识点全总结范文【第三篇】

(1)先看“充分条件和必要条件”

当命题“若p则q”为真时,可表示为p=q,则我们称p为q的充分条件,q是p的必要条件。这里由p=q,得出p为q的充分条件是容易理解的。

但为什么说q是p的必要条件呢?

事实上,与“p=q”等价的逆否命题是“非q=非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

(2)再看“充要条件”

(3)定义与充要条件。

数学中,只有a是b的充要条件时,才用a去定义b,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

高三数学知识点全总结范文【第四篇】

中考很重要,数学不简单。下面是中考数学知识点总结完整版,考前过一遍记忆更深刻!

知识点1:一元二次方程的基本概念。

1、一元二次方程3x2+5x-2=0的常数项是-2。

2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2。

3、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7。

4、把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0。

知识点2:直角坐标系与点的位置。

1、直角坐标系中,点a(3,0)在y轴上。

2、直角坐标系中,x轴上的任意点的横坐标为0。

3、直角坐标系中,点a(1,1)在第一象限。

4、直角坐标系中,点a(-2,3)在第四象限。

5、直角坐标系中,点a(-2,1)在第二象限。

知识点3:已知自变量的值求函数值。

1、当x=2时,函数y=的值为1。

2、当x=3时,函数y=的值为1。

3、当x=-1时,函数y=的值为1。

知识点4:基本函数的概念及性质。

1、函数y=-8x是一次函数。

2、函数y=4x+1是正比例函数。

3、函数是反比例函数。

4、抛物线y=-3(x-2)2-5的开口向下。

5、抛物线y=4(x-3)2-10的对称轴是x=3。

6、抛物线的顶点坐标是(1,2)。

7、反比例函数的图象在第一、三象限。

知识点5:数据的平均数中位数与众数。

1、数据13,10,12,8,7的平均数是10。

2、数据3,4,2,4,4的众数是4。

3、数据1,2,3,4,5的中位数是3。

知识点6:特殊三角函数值。

1、cos30°=。

2、sin260°+cos260°=1。

3、2sin30°+tan45°=2。

4、tan45°=1。

5、cos60°+sin30°=1。

知识点7:圆的基本性质。

1、半圆或直径所对的`圆周角是直角。

2、任意一个三角形一定有一个外接圆。

3、在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

4、在同圆或等圆中,相等的圆心角所对的弧相等。

5、同弧所对的圆周角等于圆心角的一半。

6、同圆或等圆的半径相等。

7、过三个点一定可以作一个圆。

8、长度相等的两条弧是等弧。

9、在同圆或等圆中,相等的圆心角所对的弧相等。

10、经过圆心平分弦的直径垂直于弦。

知识点8:直线与圆的位置关系。

1、直线与圆有唯一公共点时,叫做直线与圆相切。

2、三角形的外接圆的圆心叫做三角形的外心。

3、弦切角等于所夹的弧所对的圆心角。

4、三角形的内切圆的圆心叫做三角形的内心。

5、垂直于半径的直线必为圆的切线。

6、过半径的外端点并且垂直于半径的直线是圆的切线。

7、垂直于半径的直线是圆的切线。

8、圆的切线垂直于过切点的半径。

高三数学知识点全总结范文【第五篇】

优点:操作简便易行。

缺点:总体过大不易实行。

方法。

(1)抽签法。

一般地,抽签法就是把总体中的n个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

(抽签法简单易行,适用于总体中的个数不多时。当总体中的个体数较多时,将总体“搅拌均匀”就比较困难,用抽签法产生的样本代表性差的可能性很大)。

(2)随机数法。

随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。

高三数学知识点全总结范文【第六篇】

高考主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

平面向量和三角函数。

高考数学重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

数列。

数列这个板块,在高考中重点考两个方面:一个通项;一个是求和。

空间向量和立体几何。

在高考数学考试里面重点考察两个方面:一个是证明;一个是计算。

高三数学知识点全总结范文【第七篇】

一、内环境:(由细胞外液构成的液体环境)。

二、稳态。

(1)概念:正常机体通过调节作用,使各个器官、系统协调活动,共同维持内环境的相对稳定状态叫做稳态。

(2)意义:维持内环境在一定范围内的稳态是生命活动正常进行的必要条件。

(3)调节机制:神经——体液——免疫调节网络。

高三数学知识点全总结范文【第八篇】

学数学要有阶段目标,阶段化小目标就是你在当前的一个阶段内想达到的程度,例如在月考时要考到班级多少名,这周要看什么科目书籍,什么时候看等。下面是网友为大家分享的“高三数学知识点全总结范例(10篇)”,希望对您有所帮助!

1、已知切点q(x0,y0),若y?=2px,则切线y0y=p(x0+x);若x?=2py,则切线x0x=p(y0+y)等。

2、已知切点q(x0,y0)。

若y?=2px,则切线y0y=p(x0+x)。

若x?=2py,则切线x0x=p(y0+y)。

3、已知切线斜率k。

若y?=2px,则切线y=kx+p/(2k)。

若x?=2py,则切线x=y/k+pk/2(y=kx-pk?/2)。

1、过抛物线焦弦两端的切线的交点在抛物线的准线上。

2、过抛物线焦弦两端的切线互相垂直。

3、以抛物线焦弦为直径的圆与抛物线的准线相切。

4、过抛物线焦弦两端的切线的交点与抛物线的焦点的连线和焦点弦互相垂直。

5、过焦弦两端的切线的交点与焦弦中点的连线,被抛物线所平分。

1、做题后加强反思。

高三学生一定要明确一点,就是现在正在做的题,一定不是考试的题。所以高三学生做题不是目的,学会运用数学题目的解题思路和方法才是正道。因此,高三学生对于每道题都要加以反思。

2、主动复习总结。

高三学生想要学好数学,进行章节总结是非常重要的。在初中的时候,都是教师替学生做总结;但是到了高中之后,就需要学生自己来做了。所以高三学生需要自己常总结,主动复习。

1.先看笔记后做作业。

有的高一学生感到,老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。

因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。

2.做题之后加强反思。

学生一定要明确,现在正做着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思,总结一下自己的收获。

要总结出:这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串。日久天长,构建起一个内容与方法的科学的网络系统。俗话说:“有钱难买回头看”。做完作业,回头细看,价值极大。这个回头看,是学习过程中很重要的一个环节。

第一:函数和导数。这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二:平面向量和三角函数。重点考察三个方面:第一是化简与求值,重点掌握五组基本公式。第二是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质。第三是正弦定理和余弦定理来解三角形,难度比较小。

第三:数列。数列这个板块,重点考两个方面:一个通项;一个是求和。

第四:空间向量和立体几何。在里面重点考察两个方面:一个是证明;一个是计算。

第五:概率和统计。这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一是等可能的概率,第二是事件,第三是独立事件,还有独立重复事件发生的概率。

高三数学知识点全总结范文【第九篇】

1.向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.

2.几个概念:零向量、单位向量(与共线的单位向量是,平行(共线)向量(无传递性,是因为有)、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(在上的投影是).

3.两非零向量平行(共线)的充要条件。

4.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数,使a=e1+e2.

5.三点共线;。

6.向量的数量积:

将本文的word文档下载到电脑,方便收藏和打印。

高三数学知识点全总结范文【第十篇】

1、基本事件特点:任何两个基本事件是互斥的;任何事件(除不可能事件)都可以表示成基本事件的和。

2、古典概率:具有下列两个特征的随机试验的数学模型称为古典概型:

(1)试验中所有可能出现的基本事件只有有限个;。

(2)每个基本事件出现的可能性相等.

p(a)a中所含样本点的个数na中所含样本点的个数n.

3、几何概率:如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件a的概率为几何概率.几何概率具有无限性和等可能性。

4、古典概率和几何概率的基本事件都是等可能的;但古典概率基本事件的个数是有限的,几何概率的是无限个的.

计数与概率问题在近几年的高考中都加大了考查的力度,每年都以解答题的形式出现。在复习过程中,由于知识抽象性强,学习中要注重基础知识和基本方法,不可过深,过难。复习时可从最基本的公式,定理,题型入手,恰当选取典型例题,构建思维模式,造成思维依托和思维的合理定势。

另外,要加强数学思想方法的训练,这部分所涉及的数学思想主要有:分类讨论思想、等价转化思想、整体思想、数形结合思想,在概率和概率与统计中又体现了概率思想、统计思想、数学建模的思想等。在复习中应有意识用数学思想方法指导解题,不可就题论题,将问题孤立,片面强调单一知识和题型。

能力方面主要考查:运算能力、逻辑思维能力、抽象思维能力、分析问题和解决实际问题的.能力。在高考中本部分以考查实际问题为主,解决它不能机械地套用模式,而要认真分析,抽象出其中的数量关系,转化为数学问题,再利用有关的数学知识加以解决。

相关推荐

热门文档

35 1906496