首页 > 工作范文 > 总结报告 >

高三数学复习知识点总结【推荐4篇】

网友发表时间 80018

发表时间

【路引】由阿拉题库网美丽的网友为您整理分享的“高三数学复习知识点总结【推荐4篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

高三数学复习知识点【第一篇】

函数

高考主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分 布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

平面向量和三角函数

高考数学重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

数列

数列这个板块,在高考中重点考两个方面:一个通项;一个是求和。

空间向量和立体几何

在高考数学考试里面重点考察两个方面:一个是证明;一个是计算。

高三数学复习计划【第二篇】

一、 教学目的及要求:

1、 继续完成第一轮复习,要求在2月底前完成。

2、 引导学生搞好第二轮专题复习,逐步形成知识网络,提高复习的`针对性,时 间安排为两个月左右。

3、 搞好三轮综合训练。

4、 坚持每长周一次综合考试,每小周一套小题。

二、 学生基本情况及应对措施:

经过第一轮复习的磨合,多数学生学习积极性更高,知识点也基本巩固,尚需提升能力。二三轮复习要在立足基础的前提下进行专题整合及综合演练,备课组应坚持整体推进,集思广益,把握尺度,控制难度,注重考练结合,特别要注意上好试卷讲评课,要认真分析近三年来的高考试题及最新的考纲变化,精心选题,既分工又合作,并针对各班实际进行必要的补充和强化,要充分利用网络优势,加强对高考信息的研究。要大力抓好心品素质和考试技巧的训练,特别是要抓好学生规范答题的训练,要认真搞好全市水平检测及全县模拟考试,力争20xx高考数学成绩再上新台阶。

高三数学复习知识点总结【第三篇】

符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。

轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。

轨迹方程就是与几何轨迹对应的代数描述。

一、求动点的轨迹方程的基本步骤

⒈建立适当的坐标系,设出动点M的坐标;

⒉写出点M的集合;

⒊列出方程=0;

⒋化简方程为最简形式;

⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

_译法:求动点轨迹方程的一般步骤

①建系——建立适当的坐标系;

②设点——设轨迹上的任一点P(x,y);

③列式——列出动点p所满足的关系式;

④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

⑤证明——证明所求方程即为符合条件的动点轨迹方程。

高三数学复习知识点总结【第四篇】

1、进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。

2、在应用条件时,易A忽略是空集的情况

3、你会用补集的思想解决有关问题吗?

4、简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?

5、你知道“否命题”与“命题的否定形式”的区别。

6、求解与函数有关的问题易忽略定义域优先的原则。

7、判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。

8、求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。

9、原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调

10、你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法

11、求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。

12、求函数的值域必须先求函数的定义域。

13、如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题)。这几种基本应用你掌握了吗?

14、解对数函数问题时,你注意到真数与底数的限制条件了吗?

(真数大于零,底数大于零且不等于1)字母底数还需讨论

15、三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?

16、用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17、“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?

18、利用均值不等式求最值时,你是否注意到:“一正;二定;三等”。

19、绝对值不等式的解法及其几何意义是什么?

20、解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?

21、解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”。

22、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

23、两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.

24、解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?

25、在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

26、你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?

27、数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)

28、应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。

29、正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?

30、三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?

31、在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?

32、你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角。异角化同角,异名化同名,高次化低次)

33、反正弦、反余弦、反正切函数的取值范围分别是

34、你还记得某些特殊角的三角函数值吗?

35、掌握正弦函数、余弦函数及正切函数的图象和性质。你会写三角函数的单调区间吗?会写简单的`三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?

36、函数的图象的平移,方程的平移以及点的平移公式易混:

(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为y=2(x+2)+4-3,即y=2x+5.

(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为2(x+2)-(y+3)+4=0,即y=2x+5.

(3)点的平移公式:点P(x,y)按向量平移到点P(x,y),则x=x+hy=y+k.

37、在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)

38、形如的周期都是,但的周期为。

39、正弦定理时易忘比值还等于2R。

相关推荐

热门文档