首页 > 工作范文 > 总结报告 >

实验报告 实验报告样例word文档(精选4篇)

网友发表时间 371240

【路引】由阿拉题库网美丽的网友为您整理分享的“实验报告 实验报告样例word文档(精选4篇)”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

关于实验报告【第一篇】

一、实验目的

1.了解LAN中常用的几种传输介质、连接器的性能及各自特点。

2.学习双绞线、同轴电缆网线的制作和掌握网线制作工具,电缆测试仪的使用。

二、实验任务

1、掌握LAN中常用的几种传输介质、连接器的连接方法与实际使用。

2、独立制作一根合格的双绞线或同轴电缆的网线。

三、实验设备

实验所需设备有5类双绞线,RJ-45头,细缆,BNC接头,T型头,端接器、同轴电缆、收发器、AUI电缆、双绞线、同轴细缆压线钳,电缆测试仪,剥线钳、剪刀等。

四、相关基本知识

1.电子电路,数字逻辑电路。

2.微型计算机工作原理,计算机接口技术。

3.计算机网络拓扑结构,网络传输介质等基础知识。

五、实验内容与步骤

(一)实验原理

目前计算机网络的有线通信大多采用铜芯线或光纤作为传输介质。常用的传输介质有同轴粗缆与细缆,无屏蔽双绞线(UTP)、光纤等。网络中计算机之间的信息交换,通过网络终端设备将要传输的信息转化成相关传输介质所需的电信号或光信号,然后通过传输介质、网络设备进行传输。不同的传输介质具有不同的电气特性、机械特性、和信息传输格式,因此,它们也就具有不同的传输方式、传输速率,传输距离等。在组建局域网时,要根据具体情况 (如覆盖范围、应用对象、性能要求、资金情况等)来决定采用何种网络拓扑结构、传输介质及相关的网络连接设备等。

双绞线:双绞线是由两根绝缘金属线互相缠绕而成,这样的一对线作为一条通信链路,由四对双绞线构成双绞线电缆。双绞线点到点的通信距离一般不超过100米。目前,计算机网络上用的双绞线有三类(最高传输率为10 Mbps)、五类线(最高传输率为10 0 Mbps)、超五类线和六类线(传输速率至少为250 Mbps)、七类线(传输速率至少为600 Mbps)。双绞线电缆的连接器一般为RJ-45.

(二)实验步骤

1、首先用压线钳的剪线刀口剪裁出计划需要使用到的双绞线长度。

2、抽出外套层,可以利用压线钳的剪线刀口将线头剪齐,再将线头放到剥线专用的刀口,稍微用力握紧压线钳慢慢旋转,让刀口慢慢划开双绞线的保护胶皮,然后剥掉外套层。

3、排序,根据实际需要按照标准将线排序。

4、整理,排序后应尽量将线头拉直理平,然后用压线钳将多余的线头剪掉。

5、插入水晶头,将排序后的双绞线线头插入部分插入到水晶头中,插入后用力压住双绞线,尽力的将双绞线头向水晶头中推,以保证线头充分的插入水晶头中。

6、压线,经过上述步骤后,只要使用压线钳将线压紧即可。

(三)回答思考题。

1)双绞线、细缆、粗缆三种传输介质各有什么特点

同轴线和双绞线的区别主要是网络拓扑不同,同轴电缆只能是总线型结构,而双绞线则是星型结构。三种介质传输的最大带宽不同,粗缆传输带宽最宽,其次,细缆,最宅的双绞线。不过双绞线抗干扰能力强,可靠性高,传输距离比细缆和粗缆长。

2)A线序和B线序有何区别若不遵循上述标准,是否所做的网线不可用。

两端的线序相同叫直通线,都遵循568B标准,不同类型设备之间连接使用直通线,如网卡到交换机,网卡到ADSL modem,交换机到路由器等;而一端为568B线序,一端为568A线序的为交叉线,即1-3、2-6调换,用于相同设备之间的连接,如两台电脑的网卡连接,交换机与交换机之间的连接,交换机与集线器连接等。

不按上述标准,只要保持线序正确,就可以正常使用。

精选实验报告范文集锦【第二篇】

本实例是通过“站点定义为”对话框中的“高级”选项卡创建一个新站点。

1、生均一台多媒体电脑,组建内部局域网,并且接入国际互联网。

2、安装windows xp操作系统;建立iis服务器环境,支持asp。

3、安装网页三剑客(dreamweaver mx;flash mx;fireworks mx)等网页设计软件;

通过“站点定义为”对话框中的“高级”选项卡创建一个新站点。

1)执行“站点\管理站点”命令,在弹出的“管理站点”对话框中单击“新建”按钮,在弹出的快捷菜单中选择“站点”命令。

2)在弹出的“站点定义为”对话框中单击“高级”选项卡。

3)在“站点名称”文本框中输入站点名称,在“默认文件夹”文本框中选择所创建的站点文件夹。在“默认图象文件夹”文本框中选择存放图象的文件夹,完成后单击“确定”按钮,返回“管理站点”对话框。

4)在“管理站点”对话框中单击“完成”按钮,站点创建完毕。

实验开始之前要先建立一个根文件夹,在实验的过程中把站点存在自己建的文件夹里,这样才能使实验条理化,不至于在实验后找不到自己的站点。在实验过程中会出现一些选项,计算机一般会有默认的选择,最后不要去更改,如果要更改要先充分了解清楚该选项的含义,以及它会造成的效果,否则会使实验的结果失真。实验前先熟悉好操作软件是做好该实验的关键。

协议主题班会【第三篇】

征文建军节入团,祝酒词自我鉴定谜语回复;周记思想汇报答谢词:乐府语录状物表扬信:代表发言新课程了道歉信词语仿写征文了工作计划面积调查报告主题班会:宣言应急预案工作简报庆典致辞谜语大全贬义词弘扬了党课章程对照检查挽联。

关于实验报告【第四篇】

一、实验目的

1、 学习电子顺磁共振的基本原理和实验方法;;

2、 了解、掌握电子顺磁共振谱仪的调节与使用;

3、 测定DMPO-OH 的EPR 信号。

二、实验原理

1、电子顺磁共振(电子自旋共振)

电子自旋共振(Electron Spin Resonance, ESR)或电子顺磁共振(Electron Paramagnanetic Resonance,EPR),是指在稳恒磁场作用下,含有未成对电子的原子、离子或分子的顺磁性物质,对微波发生的共振吸收。1944年,苏联物理学家扎沃伊斯基(Zavoisky)首次从CuCl2 、MnCl2等顺磁性盐类发现。电子自旋共振(顺磁共振)研究主要对象是化学自由基、过渡金属离子和稀土离子及其化合物、固体中的杂质缺陷等,通过对这类顺磁物质电子自旋共振波谱的观测(测量因子、线宽、弛豫时间、超精细结构参数等),可了解这些物质中未成对电子状态及所处环境的信息,因而它是探索物质微观结构和运动状态的重要工具。由于这种方法不改变或破坏被研究对象本身的性质,因而对寿命短、化学活性高又很不稳定的自由基或三重态分子显得特别有用。近年来,一种新的高时间分辨ESR技术,被用来研究激光光解所产生的瞬态顺磁物质(光解自由基)的电子自旋极化机制,以获得分子激发态和自由基反应动力学信息,成为光物理与光化学研究中了解光与分子相互作的一种重要手段。电子自旋共振技术的这种独特作用,已经在物理学、化学、生物学、医学、考古等领域得到了广泛的应用。

基本原理

EPR 是把电子的自旋磁矩作为探针,从电子自旋磁矩与物质中其它部分的相互作用导致EPR 谱的变化来研究物质结构的,所以只有具有电子自旋未完全配对,电子壳层只被部分填充(即分子轨道中有单个排列的电子或几个平行排列的电子)的物质,才适合作EPR 的研究。不成对电子有自旋运动,自旋运动产生自旋磁矩, 外加磁场后,自旋磁矩将平行或反平行磁场方向排列。经典电磁学可知,将磁矩为μ的小磁体放在外磁场H 中,它们的相互作用能为:

E=-μ· H = -μH cosθ

这里θ为μ与H 之间的夹角,当θ= 0 时,E = -μH, 能量最低,体系最稳定。θ=π时,E=μH,能量最高。如果体系从低能量状态改变到高能量状态,需要外界提供能量;反之,如果体系由高能量状态改变为低能量状态,体系则向外释放能量。

根据量子力学,电子的自旋运动和相应的磁矩为:

μs=-gβS

其中S 是自旋算符,它在磁场方向的投影记为MS, MS 称为磁量子数,对自由电子的MS 只可能取两个值,MS=±1/2, 因此,自由电子在磁场中有两个不同的能量状态,相应的能量是:

E±=±(1/2)geβH

记为: Eα= +(1/2)geβH

Eβ= -(1/2)geβH

式中Eα代表自旋磁矩反平行外磁场方向排列,能量最高;Eβ代表平行外磁场方向排列,能量最低。但当H=0 时,Eα=Eβ, 相应的Ms=±1/2 的两种自旋状态具有相同的能量。当H≠0 时,能级分裂为二,这种分裂称为Zemman 分裂。它们的能级差为:

△Ee=geβH

若在垂直稳恒磁场方向加一频率为υ的电磁辐射场,且满足条件:

hυ = gβH

式中,h—为Planck 常数,β—为Bohr 磁子,g —朗德因子;

则处在低能态的电子将吸收电磁辐射能量而跃入高能量状态,即发生受激跃迁,这就是EPR 现象。因而,hυ = gβH 称为实现EPR 所应满足的共振条件。

3.g因子

自由电子g=ge=,实际情况下g=h?/?B(H0+H’),g反映分子内部结构(因附加磁场H’与自旋、轨道及相互作用有关),自由基g值偏离很少超过±%,非有机自由基,g值可以在很大范围内变化,过渡金属离子,因轨道角动量对磁矩有贡献,g偏离ge。

4、主要特征

由于通常采用高频调场以提高仪器灵敏度,记录仪上记出的不是微波吸收曲线(由吸收系数X''对磁场强强度H作图)本身,而是它对H的一次微分曲线。后者的两个极值对应于吸收曲线上斜率最大的两点,而它与基线的交点对应于吸收曲线的顶点。

g值从共振条件hv=gβH看来,h、β为常数,在微波频率固定后,v亦为常数,余下的g与H二者成反比关系,因此g足以表明共振磁场的位置。g值在本质上反映出一种物质分子内局部磁场的特征,这种局部磁场主要来自轨道磁矩。自旋运动与轨道运动的偶合作用越强,则g值对ge(自由电子的g值)的增值越大,因此g值能提供分子结构的信息。对于只含C、H、N和O的自由基,g值非常接近ge,其增值只有千分之几。

当单电子定域在硫原子时,g值为。多数过渡金属离子及其化合物的g值就远离ge,原因就是它们原子中轨道磁矩的贡献很大。例如在一种Fe3+络合物中,g值高达。

线宽通常用一次微分曲线上两极值之间的距离表示(以高斯为单位),称“峰对峰宽度”,记作ΔHpp。线宽可作为对电子自旋与其环境所起磁的相互作用的一种检测,理论上的线宽应为无限小,但实际上由于多种原因它被大大的增宽了。

超精细结构如在单电子附近存在具有磁性的原子核{},通过二者自旋磁矩的相互作用,使单一的共振吸收谱线分裂成许多较狭的谱线,它们被称为波谱的超精细结构。设n为磁性核的个数,I为它的核自旋量子数,原来的单峰波谱便分裂成(2nI+1)条谱线,相对强度服从于一定规律。在化学和生物学中最常见的磁性核为1H及14N,它们的I各为1/2及1。如有n个1H原子存在,即得(n+1)条谱线,相对强度服从于(1+x)n中的二项式分配系数。如有n个14N原子存在,即得(2n+1)条谱线,相对强度服从于(1+x+X2)n中的3项式分配系数。超精细结构对于自由基的鉴定具有重要价值。

吸收曲线下所包的面积可从一次微分曲线进行两次积分算出,与含已知数的单电子的标准样品作比较,可测出试样中单电子的含量,即自旋浓度。

5、主要检测对象 可分为两大类:

①在分子轨道中出现不配对电子(或称单电子)的物质。如自由基(含有一个单电子的分子)、双基及多基(含有两个及两个以上单电子的分子)、三重态分子(在分子轨道中亦具有两个单电子,但它们相距很近,彼此间有很强的磁的相互作用,与双基不同)等。

②在原子轨道中出现单电子的物质,如碱金属的原子、过渡金属离子(包括铁族、钯族、铂族离子,它们依次具有未充满的3d,4d,5d壳层)、稀土金属离子(具有未充满的4f壳层)等。

三、实验内容和步骤

羟基自由基(?OH)等氧自由基是主要的活性物种,然而由于?OH 的活性高、寿命短,因而难以直接测定。捕获剂捕获短寿命的氧自由基生成相对稳定的、寿命较长的自由基,这些具有顺磁性的有机物种在磁场和微波的协同作用下容易被EPR 分析检测。 DMPO 是一种对氧自由基捕集效率很高的自旋捕集剂,而且形成的自旋加合物,DMPO-OH,有很特征的超精细分裂图谱和超精细分裂常数。

实验步骤如下:

1、取适量DMPO样品于样品管中装样,将样品管一端封住;

2、在插入样品管前用纸擦拭确保其干净;

3、样品管垂直放入谐振腔,等待EPR 检测。

4、调节仪器参数,得到谱图。

四、实验结果与讨论

得到数据见附图。从图中可见,DMPO-OH 的EPR 波谱由四条谱线组成,强度比为1:2:2:1。

五、实验心得

电子顺磁共振(EPR)和核磁共振(NMR)的区别:

a. EPR和NMR是分别研究电子磁矩和核磁矩在外磁场中重新取向所需的能量; b. EPR的共振频率在微波波段,NMR共振频率在射频波段;

c. EPR的灵敏度比NMR的灵敏度高,EPR检出所需自由基的绝对浓度约在10-8M的数量级;

d. EPR和NMR仪器结构上的差别,前者是恒定频率,采取扫场法,后者还可以恒定磁场,采取扫频法。

相关推荐

热门文档

35 371240