首页 > 工作范文 > 总结报告 >

数列求和的方法总结精选4篇

网友发表时间 249686

【路引】由阿拉题库网美丽的网友为您整理分享的“数列求和的方法总结精选4篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

基本公式法【第一篇】

如果一个数列是符合以下某种形式,如等差、等比数列或通项为自然数的平方、立方的,那么可以直接利用以下数列求和的公式求和。

常用公式有

(1)等差数列求和公式:Sn=na1+n(n-1)2d=n(a1+an)2

(2)等比数列求和公式:Sn=na1a1(1-qn)1-q=a1-anq1-q(q=1)(q≠1)

(3)1+2+3+…+n=n(n+1)2

(4)1+3+5+…+2n-1=n2

(5)2+4+6+…+2n=n(n+1)

(6)12+22+32+…+n2=16n(n+1)(2n+1)

(7)13+23+33+…+n3=14n2(n+1)2

例1:已知等比数列an的通项公式是an=12n-1,设Sn是数列an的前n项和,求Sn。

解:∵an=12n-1∴a1=1,q=12

∴Sn=1+12+14+…+12n-1=1(1-12n)1-12=2-12n-1

数列求和的方法总结【第二篇】

01裂项相消法:

将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的结果,如图。

02公式法:

用常用求和公式求和得到细解结果,也是数列求和的最基本最重要的方法,如图。

03倒序相加法:

是解决数列求和经典方法,在等差数列前n项和公式的推导过程中,使用了这种方法,如图。

分组转化求和法【第三篇】

若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列构成,则求这个数列的前n项和Sn时可以用分组求和法求解。一般步骤是:拆裂通项――重新分组――求和合并。

例1求Sn=1×4+2×7+3×10+…+n(3n+1)的和

解由和式可知,式中第n项为an=n(3n+1)=3n2+n

∴Sn=1×4+2×7+3×10+…+n(3n+1)

=(3×12+1)+(3×22+2)+(3×32+3)+…+(3n2+n)

=3(12+22+32+…+n2)+(1+2+3+…+n)

=3×16n(n+1)(2n+1)+n(n+1)2

=n(n+1)2

并项求和法【第四篇】

一个数列an的前n项和Sn中,某些项合在一起就具有特殊的性质,因此可以几项结合求和,再求Sn,称之为并项求和法。形如an=(-1)nf(n)的类型,就可以采用相邻两项合并求解。如例3中可用并项求和法求解。

例3:求S=-12+22-32+42-…-992+1002

解S=(-12+22)+(-32+42)+…+(-992+1002)

=(1+2)+(3+4)+…+(99+100)=5050

相关推荐

热门文档

35 249686