首页 > 工作范文 > 总结报告 >

大学概率论知识点总结(实用5篇)

网友发表时间 912322

【导言】此例“大学概率论知识点总结(实用5篇)”的文档资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

大学概率论知识点总结范文1

某教师在教学北师大版五上“谁先走”时,设计了一个数学活动:学生从“3黄3白”的箱子里任意摸一个球(球除颜色外,其他完全相同),摸完放回摇匀后再摸,让学生猜摸出的球可能是什么颜色的。学生回答:“可能摸到白球,也可能摸到黄球。”为了证明结论,教师请学生动手摸球,结果一连六位学生摸出白球。教师实在没信心摸下去了,只好无奈地说:“连续摸了6个白球,这太不正常了!这组数据不准确,不算,我们重新来过!”教学再次返回摸球环节,只见热闹,不见实效。

“统计与概率”之所以难学难教,是因为该领域的一些问题无法用生活经验或已有的知识经验来解释。如果我们缺少相关的知识储备,缺乏对相关知识的深刻理解,便不能从源头上解决问题。回归学科本真,追问教学本质,用理性视角去追寻“统计与概率”基本教学逻辑,是胜任当今“统计与概率”教学的应有姿态。

追问一:摸球到底摸出了什么?

上述案例中,教师设计摸球活动的主旨何在?难道仅仅只是为了验证“既能摸出白球,又能摸出黄球吗”?通过摸球活动要传递什么样的信息给学生?

现行“统计与概率”与传统大纲中的“统计初步”在立意上有着根本变化。史宁中教授指出:“统计教育价值的核心在于逐步养成尊重事实、通过数据来分析问题的习惯,培养理解和把握随机现象的能力。”史教授从数学的角度指出“统计与概率”的学习意义。概率学家陈希孺也曾说过:“习惯于从统计规律看问题的人,在思想上不拘执一端,他既认识到事物从总的方面看有一定的规律,也承认例外。”陈先生从哲学的角度指出“统计与概率”的学习意义。

可以看出,“统计与概率”教学的主要价值在于培养学生从不确定的角度来观察世界,不能只是将它当成一个僵硬的知识点来传授,也不能只是当成一种技能来习得,它更多的是一种观念的浸润与思想的熏陶,感受随机思想,体验不确定思维,进而认识数学世界的美妙与神奇。

许多教师习惯用确定性思维去思考问题,善于驾驭以确定性为特征的数学内容,而忽视对以模糊性为特征的数学思想方法的关注,反映在对“统计与概率”的理解上,就是忽视数据分析观念的培养。随着大数据时代的到来,人们的思维方式产生了巨大的变化,数据与人的关系变得密不可分,数据分析观念已经成为每个公民不可或缺的基本素养。

怎么理解数据分析观念?数据分析观念可以分解成三个词来理解,从后往前看,一是观念。观念与意识经常不分家,数据观念也就是数据意识。强调要有数据意识,要用数据说话,知道数据是富含信息的,数据是有用的,数据可以为人服务的。二是分析。数据可以用来做什么?分析,如何分析?分析时要认识到什么?《课程标准》指出:“通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不同,另一方面只要有足够的数据就可能从中发现规律”。分析数据时要引导学生体会随机性,从而对数据产生一个正确的认识,不能唯眼前的数据是从,还要学会透过数据看规律,让数据“会说话”。三是数据。要用数据说话,要分析数据,数据怎么来?不能凭空捏造。数据需要收集,需要整理,需要用一定的方式表示。因而要让学生在经历数据的收集、整理、表示的过程中去学习。

上述案例中,由于受确定性思维的影响,师生在活动中经常会出现一种强烈的心理期待。比如,从“3白3黄”袋子里摸球,连续5次摸到白球后,绝大部分学生认为接下去一定摸到黄球。其实,学生“摸”的不应仅仅是球,伴随摸球的应该是一种思维的感悟,即不确定的思维方式和辩证思维的感悟,应该是一种观念的体验,亦即数据分析观念和随机观念的体验。这才是“摸球活动”的核心。

追问二:摸球之中隐含着什么?

上述案例中,“摸球问题”是一个古典概率模型,古典概率模型具有下面特征:实验中所有可能出现的基本事件只有有限个,就如有6个球,每次摸球必然要摸到这6个球中的一个,结果是有限个的;每个基本事件出现的可能性相等,上述案例中,球除颜色外,其他特征完全相同,摸完放回摇匀后再摸,这样,保证是在袋子里随机摸球,摸到每个球的可能性相等,都是1/6。古典概率是这样定义的:如果用N表示所有可能结果的个数,用M表示事件A发生的可能结果的个数,那么定义事件A发生的概率为P(A)=M/N。

连续6次摸到白球,这是一个小概率事件,可能性为6个1/2相乘的积,即等于1/64(约等于0?郾016)。小概率事件也是完全可能发生的。教师应引导学生克服在概率上的认知错觉。学生容易产生误解,即认为样本的抽样,必须能反应总体的分配情形,如此才符合随机化的过程。很多学生包括一些教师,都认为:“白白黄白黄黄”的顺序比“白白白白白黄”更易出现,因为这样才能显示白球与黄球摸出的次数各占一半。

既然摸出黄球的概率为1/2,为什么连摸了6次却都只是白球?这正体现了摸球这种随机事件的随机性。理论上讲,摸出黄球或白球的概率都是1/2,而实际动手摸,并非表现为“每次必需如此”,理论概率与实验概率永远存在差异。理论概率指理想化的概率,可通过计算得出的理论值,如古典概率。实验概率指即时性的频率值,即所求事件发生的次数与实验总次数的比,用频率值来估计概率。如抛硬币,正面朝上的理论值是1/2,实际抛100次,很难刚好50次正面朝上,假如是43次,那么它实际发生的概率就是0?郾43。只有在大数定律的支持下,实验概率才趋向理论概率。

什么是大数定律?简单地说,大数定律就是:实验次数足够多时,事件发生的频率(出现的次数/总次数)接近于该事件发生的概率。通俗的表达是:一方面对于同样的事情每次收集到的数据可能不同,另一方面只要有足够的数据就可能从中发现规律。“足够的数据”中的“足够”,应该到什么程度?要多到足以让规律显现出来。如掷色子,质地均匀的色子,每个点数朝上的可能性都相等,都是1/6,这是理论上的概率。实际动手抛会怎么样呢?要抛多少次才能看到这个规律呢?对此,笔者也曾做过相关试验:抛到500次、1000次时还看不出规律,要抛到1300次以后,规律才呈现出来,抛到1700次以后,点数“1”朝上的频率值才会稳定在1/6上下,500次在大数定律中还是个小数。上述案例中,摸球活动只做了6次,仅凭6次就要“发现”其中的规律显然远远不够。所以,在课堂上教师需经常组织学生经历“小组试验―全班汇总―分析数据―得出结论”的过程,目的在于让全班的汇总数据尽量大,以期达到“足够”的程度。有时候还可以在学生完成一定次数的实验后,借助计算机模拟继续实验,在较短的时间内收集到足够的数据。

追问三:摸球活动要做到什么?

类似这种与我们的心理期望不一致的小概率事件,有时会出现在我们的课堂上,此时应怎么引导呢?

首先,要正确认识学生的“前理解”。研究表明,处在具体思维阶段的学生,已能理解事件的必然性和可能性,但他们缺乏系统的思维,没有足够能力从概率实验中抽象出概率的数学模式。同时,统计与概率研究的对象、方法、结果在某种程度上都具有一定的不确定性,学生一时适应不了,有时还会产生迷惑不解和理解上的偏差。再者,在正式学习“统计与概率”前,学生也不是一张白纸,他们在生活中也遇到过随机事件,积累了一些关于概率的体验和想法。大量教学实践也表明,学生在学习概率的各个阶段都会存在一定的认知偏差,这种认知偏差经常以一种直觉的方式悄无声息地影响着学生的概率认知。小概率事件,更是学生认识与理解的难点,即使经过系统的学习,这种影响仍然存在。

书中自有黄金屋,书中自有颜如玉。上面的5篇大学概率论知识点总结是由山草香精心整理的概率论范文范本,感谢您的阅读与参考。

大学概率论知识点总结范文2

1突出知识的产生背景

简而言之,所谓的“突出知识的产生背景”就是让学生知道为什么要学习这个知识点。在编辑教材时往往出于篇幅以及学术性的考虑而略掉了知识点的产生过程或者应用背景。但教师在授课过程中应该让学生明了为何要学习这个知识点,也就是首先让学生了解该知识点的产生过程或者应用背景,从而激发他们对该课程的学习兴趣。例如,当讲授到概率的公理化定义时,教师不妨一开始就告诉学生为何要学习该公理化定义,其原因在于我们之前介绍了若干种计算概率的方法,既然不同的方法计算出来的都是概率,很自然地我们就要思考“什么才是概率”这个问题。而数学学科的一个特点就是用高度精确而简练的语言来描述自然界或者数学科学中具有相同性质的一些事物,那我们应该用什么样的最简洁的语言来给出概率的定义呢?接着教师不妨举一两个例子说明历史上数学家关于这方面工作的努力探索,再指出我们现在所学习的公理化定义是1933年前苏联数学家科尔莫哥洛夫所给出的。然后再引进概率的公理化定义,之后还可以通过对不同方法所得到的概率来对公理化定义进行检验,说明不同方法得到的概率都满足概率的公理化定义。这样一来,学生就知道了为什么要学习概率公理化定义,其学习兴趣也会大大提高。当然,突出知识的产生背景不一定在授课初始就告诉学生,也可以在授课过程中或者授课结束总结时给出。例如,当讲到棣莫弗-拉普拉斯定理,即若随机变量X服从参数为n,p的二项分布,则对于任意区间[a,b),恒有比较上述两式可发现前式有2000个数相加,而后式可通过查表很容易得到结果。于是最后给出总结:棣莫弗-拉普拉斯定理的作用就是把复杂计算进行简化的过程,它的主要作用就是把二项分布概率模型下若干项的概率之和转化为一个正态分布标准化查表计算的过程。

2加强课堂教学的师生互动

数学家的故事以及数学知识的产生历史或应用背景可以为枯燥的数学知识增添一些光泽,但为了提高课堂的教学效果,师生间的课堂互动必不可少。作为教学的另外一个主体———学生因为年龄处于20岁左右,注意力容易分散,如果没有有效的师生互动,学生的注意力很容易就会偏离课堂。那么如何才能达到师生之间的有效互动呢?笔者认为如下方法可行。

课堂提问提问的问题应该是精心设计的,且应具备趣味性和启发性。一般而言,数学课堂的提问问题要和所讲授的公式或者定理紧密联系。例如在讲到“泊松近似定理”时,教师可以首先僵硬地摆出公式。然后提问学生:“你觉得左右两个公式哪一个比较简单”。由于学生高中开始就接触组合公式,所以他们对组合公式比较熟悉,一般情况下他们都会回答比简单。接着,引进例“某人骑摩托车上街,出事故率为,若他独立重复上街400次,求出事故恰好两次的概率。”此时让学生甲、乙到黑板求解该题目,规定甲用组合公式,乙用近似公式。结果乙不用两分钟就可通过查表解决,而甲算半天得不到结果。最后教师可以把用组合公式计算的结果以及近似公式计算的结果给出,比较之后给出以下结论:实际上“泊松近似定理”就是把复杂的计算进行简化的一个工具,并且这种简化具有很强的实际应用,特别是在没有计算机的时代,这种简化优势特别明显。

分组讨论让学生分组讨论问题,可以让每个学生都参与到课堂教学中,增加学生之间的相互交流,加深他们对所学知识的理解和掌握,也提高了学生学习的兴趣。例如在讲授“古典概率模型”时引进例“从一副没有大小王的扑克中,取五张牌,求下列事件的概率:A=出现,B=出现俘虏,C=出现四大天王,D=我们不妨先把公式展示出来,然后分析说明该定理可以陈述成若随机变量Y服从参数为n,p的二项分布,则近似地有Y~N(np,np(1-p))。于是,(2)相比之下,学生对(1)式中的积分和极限符号始终带有恐惧感,此时我们把(1)式化成了一个标准化的(2)式。而学生在高中就开始接触正态分布标准化的过程,所以这一个化简过程可以增加学生对该定理的好感,能够让学生完全掌握这个公式。此时,再引进下面的例子“在3000次抛银币的试验中,求正面向上的次数在500次到2499次之间的概率”。接着给出下面两种不同的解法:出现同色。”然后让学生分组讨论,最后各组选派代表在黑板上写出答案。由于该问题源于实际生活,学生都会积极地参与到讨论中,这样课堂气氛就会活跃起来,也提高了教学效果。

黑板练习随机选择部分学生到黑板进行练习。有些大学教师或许会认为让学生到黑板进行练习是中学教师做的事情,实际上大学数学教学中随机选择学生到黑板练习也是必须并且很有意义的。随机地挑选学生到黑板进行练习可以让教师了解到学生对知识的掌握程度,同时也可以对学生的心理造成一定的影响,对抄袭作业等行为起到一定的抑制作用,并且也可以加强师生间的课堂互动。

3注意教材的灵活处理

首先教材的选择非常重要,要根据学生的授课学时、接受能力进行筛选。但是,即使确定好教材之后,授课内容也必须因材施教。例如在农业院校给农学的学生授课,在概率论方面应该注重理论知识的讲解,里面一些知识的推导必不可少,其逻辑性要求也应该严谨化。这样有助于学生数学思维的锻炼,也有助于提高学生学习数学的兴趣,如前文所介绍的棣莫弗-拉普拉斯定理的讲授。但对于数理统计部分内容,由于其知识推导需要较多较复杂的高等数学知识,所以在对农科数学学生授课过程中就不宜于详细证明和推导,而更应该侧重于思想以及知识的实际应用。例如,在讲授“无交互作用的双因素的方差分析”时,对于公式SST=SSA+SSB+SSE我们可不必进行严格推导,只是粗略地介绍一下其推导原理,即,而更应该注重于SST,SSA,SSB,SSE的意义,并且突出“无交互作用的双因素的方差分析”的应用背景。这样的授课方式,即概率论方面注重于理论推导、数理统计方面注重于实际应用的处理方法主要是根据农业院校的学生文理兼有、数学基础参差不齐并且学时数不多的情况而采用。否则,若把数理统计部分内容也进行严格化证明和推导,那对于很多高中选修文科上来的大一学生来说无疑是难度过大,最终虽然教师授课认真辛苦,但教学效果会大打折扣。因此,教师应该根据不同的学科需要并且根据不同的学生水平选择适当的教材,并合理地处理教材中的授课内容。

4留意知识的前后联系

概率论与数理统计是数学学科的一个分支,因此在授课过程中教师也应该时时留意知识的前后联系。这里所讲“知识的前后联系”主要有以下两种情况:第一,新旧概念的区别联系。当讲授到一个新概念,发现它与某些旧概念有密切联系或者容易产生混淆时就应该对两者进行对比辨析。例如,当讲授到“相互独立”概念时,很多学生都会把它与“互不相容”概念联系在一起或者对这两个概念产生混淆。此时,教师应该通过例子说明“相互独立”与“互不相容”没有任何联系;第二,新旧结论的区别联系。当讲授到一个新结论,发现它和原来的结论容易产生混淆时,教师也应该通过例子对两者进行辨析。例如在讲授完“独立同分布的中心极限定理”之后,很多学生就会把它和“切比雪夫不等式”混淆。此时不妨引进下面例子“一零件包括10部分,每部分的长度是一个随机变量,相互独立,且具有同一分布。其数学期望是2mm,均方差是,规定总长度为20±时产品合格,试求产品合格的概率。”然后让学生用“独立同分布的中心极限定理”和“切比雪夫不等式”来求解(也可以分组讨论)。通过这个例子可以很好地让学生明白“切比雪夫不等式”一般用于理论研究,得到的结果比较粗糙(该例用“切比雪夫不等式”将得到一个毫无疑义的但并无矛盾的不等式)。相比之下,“独立同分布的中心极限定理”更具有实际应用的价值。除此之外,教师还应在授课过程中注意到新旧知识的前后承接或者同一概念的前后变异。例如,在讲授到数理统计知识时书本往往针对于正态总体进行展开,这时候就要复习中心极限定理以及通过实例来说明现实生活中大部分的随机变量都服从或者近似地服从正态分布,因此数理统计基本上都是针对正态总体进行研究。另外,在讲授到回归分析中的样本相关系数应该和概率论中所讲授的两个随机变量的相关系数进行对比,这样就可以让学生更好地理解样本相关系数的作用以及定义的形式。总而言之,在授课过程中教师应时刻留意知识的前后联系,这样可以使学生对新旧知识有更好的理解和认识,也加深他们对新旧知识的记忆和掌握。

5注重理论的实际应用

大学概率论知识点总结范文3

——对人教版初中数学课标教材使用中一些问题的思考

人教版初中数学课标教材于2003年经教育部中小学教材审定委员会审查通过,2004年秋起在全国课程标准教材试验区开始使用。2007年,本着“尊重实验检验,深入研究问题,不断提高质量”的态度,人教社中数室又对教材进行了修订。教材使用几年来,笔者通过教材研讨会、教材培训回访、教材实验情况调查、读者来信等,收集到了许多教材使用中的意见和建议。在对这些问题认真思考的基础上,现将一些共性的问题整理出来,供广大教师和教研员参考,希望对于教学的研究与实践有所帮助。

一、关于教材的知识体系安排

课标实验教材中代数、几何不再分科,而是综合安排课程标准规定的“数与代数”“空间与图形”“统计与概率”“实践与综合应用”几部分教学内容。因此,教材的体系结构与以往的大纲教材相比,发生了很大的变化。为了更好地让教师理解编者的意图,现将几个问题说明如下。

1.代数预备知识的处理

在数与代数领域,基本内容仍然是数、式、方程(组)、函数等。为了突出方程、函数等重点内容的学习,教材对于代数式的相关内容作了分散处理。在2007年以前的课标实验本教材中,教科书是利用分配律,将有理数的运算引伸到相同字母因数的式子的加减法及去括号问题,在解一元一次方程时,对相关的代数预备知识进一步巩固,最后再在前面已有具体的、分散的对式的学习的基础上,安排整式、分式和二次根式各章,对代数式的有关内容进行较系统的学习。实际上,代数式的内容是学习方程、函数等内容的预备知识,而我们在研究一次(一次方程、一次函数)的问题时,用到的代数知识也就是最简单的含有一个相同字母因数的式子的合并同类项、去括号等。因此实验教材的这种安排在逻辑上是没有问题的。

教科书的这种“分散安排、够用即可”的处理方式,体现了数学知识的本身的发生发展过程。但是,由于实验教材与原来大纲教材变化很大,很多教师难以适应。也有教师指出,教材的这种处理对教师、学生的要求都比较高,对于一些基础比较差的学生,在学习有理数的运算后对于由数到式的自然过渡不适应,解方程时出现欠缺必要的预备知识的难点,不利于对基本运算技能的掌握。考虑到这些意见,2007年教科书对这个问题进行了修订。将整式的运算分成两部分,“整式的加减”的内容单独安排一章,放在“有理数”和“一元一次方程”之间,作为学生学习“一次”内容(式、方程、不等式、函数等)的预备知识;“整式的乘除与因式分解”安排为另一章,放在“一次函数”内容之后,作为学生进一步学习“二次”内容的基础。这种处理,既保持了教科书对于代数预备知识“突出重点、分散安排”的处理原则,又使得相关内容比较集中,利于教师教学,从一年来教学实验的反馈信息来看,教师对此调整还是比较认可的。

2.函数内容的安排

课标教材改变了大纲教材“先集中出方程,后集中出函数”的做法,而是按照“一次”和“二次”的数量关系,使方程和函数内容交替出现,即按一次方程(组)、一次函数、二次方程、二次函数的顺序螺旋上升。这样处理,一方面克服直线式发展所产生的不易理解消化的弊病(原大纲教材的“函数”内容一直是教学的难点),分阶段地不断地深化对方程和函数的理解;另一方面强化基本概念之间的内在联系,从函数角度提高对方程等内容的认识,“ 用函数观点看方程(组)与不等式”等就是为此而特意安排的内容。

这种处理,还是得到大部分教师的认可的。我们知道,函数内容历来是初中代数的重点,也是难点。难就难在它是反映事物间运动变化关系的数学模型,是由常量数学到变量数学的一个过渡。教材在处理这部分内容时,对于如何克服这个难点也作出了很多努力。在呈现概念时,无论是正比例函数和一次函数,还是后面研究的反比例函数、二次函数、三角函数等,教科书都是通过大量的实例(图象的、表格的、解析式的),向学生展示不同函数所反映的运动变化的规律;在研究它们的图象和性质时,注意加强类比,突出研究方法的引导,突出“观察图象反映的变化规律——用自然语言描述变化规律——用符号语言描述变化规律”的三步曲等等。教学中要注意理解教材的这种安排,使得学生对这种运动变化的数学模型有一个长时间的认识过程。不要开始就一步到位,将许多原来初三复习时的综合题目拿来处理。否则不是“难点分散”,而是“难点提前”了。今年秋开始使用的修订后的八上教材中,我们也将“一次函数”的内容适当地作了后移,这也是为了适应学生的认知规律,让学生更好地理解函数内容。

3.平面直角坐标系位置

在原大纲教材中,平面直角坐标系的内容安排在函数内容之前,坐标系的内容仅只是为了研究函数。在课标教材中,为更好地反映数与形之间的内在联系,提前安排了平面直角坐标系的内容(七年级下学期,第6章),使坐标这种能充分体现数形结合思想的工具能更早更多地得到使用。坐标系的内容不仅用于研究函数,也用于其他方面,如用坐标方法分析平移变换、对称变换等的本质特征,处理某些图形问题,加深对函数及二元一次方程组、不等式等的认识等。

教科书提前安排平面直角坐标系的内容,主要是为了尽早的把这个数形结合的工具给学生。在平面直角坐标系中,一个有序数对(x,y)可以和平面上的一个点建立一一对应关系,架起了数与形之间的桥梁,使得我们可以用代数方法研究几何问题,又可以用几何方法研究代数问题。对于平面直角坐标系的这种桥梁作用,教学中要充分重视。另外,在课程标准中,坐标系的内容是放在“空间与图形”领域的,教科书也是从位置确定的角度引入的,这与大纲教材不同,教学中要引起注意。此外,由于七年级下学期初学生还没有学习实数,“平面直角坐标系”一章主要研究的是点与有序整数对的对应关系,要注意把握这一教学要求。

4.圆与相似的位置

本套教科书中,“相似”的内容安排在“圆”之后,主要是出于以下几点考虑:

首先,在课程标准中,相似是图形变换的一个内容,教科书也是将它作为一种图形的变换处理的。对于图形的变换,按照由简单到复杂的顺序,教科书先安排的平移、轴对称、旋转等全等变换,后安排相似变换。而研究圆的一些性质,又与旋转变换关系密切,因此把圆紧接着安排在了旋转之后。

其次,对应课程标准中“圆”的内容,已经删去诸如“弦切角”“圆幂定理”等教学内容和教学要求,学习圆的相关知识,用不到相似的知识储备。即便是修订的课程标准(征求意见稿)中增加了有关定理(弧、弦、圆心角的关系、垂径定理、圆周角定理、切线的判定和性质定理等)的证明,也不需要相似的知识。因此,可以把相似放在圆后来学习。

另外,把相似的内容安排在圆之后,还可以把圆中的一些问题作为研究相似的应用来处理。例如作为相似三角形判定和性质的应用,教科书安排了相交线定理的例题(没有给出定理名称),以及一些与圆有关的习题等。这样也能复习有关圆的知识,加深学生对与圆的理解。“把圆中的一些问题作为研究相似的应用”与“把相似作为工具来研究圆”这两种处理方式中相似的作用是不同的,相应的难度也是不同的,这一点也请老师们注意。

二、关于教材对一些内容的处理

课标教材的编写中充分注意体现普及性、基础性和发展性,在知识内容的处理上,重视科学、关注文化;重视基础、返璞归真;重视思想、立足发展。素材选取注意贴近生活,内容呈现注重过程,注意体现学生的主体地位,引导学生思维等。下面就几个具体问题加以说明。

1.注重知识之间的联系

课标教材的编写特别重视知识之间的联系,通过相关内容的呈现,引导学生认识数学知识之间的联系,感受数学的整体性,教学时应注意到这一编写意图。

在数与代数领域,有理数及其运算是一切运算系统的基础。让其他运算的对象和数作类比,让其他对象的运算和数的运算作类比,可以使我们得到很多研究方法方面的启示。例如,在“整式的加减”中,由于式子中的字母表示数,合并同类项和去括号实际就是利用有理数乘法对加法的分配律;“整式的乘除”中,各种法则实际上就是有理数加、减、乘、除、乘方的混合运算时将数字换成字母的一般情形;“分式”中,分式的概念、分式的性质、分式的运算也完全可以看作是分数的相关内容的拓展;“二次根式”中,将二次根式化为最简根式后,二次根式的加减也就类同于整式的合并同类项,也就是利用有理数的分配律,等等。教材编写时充分注意到上述联系,重视数的基础地位,类比数的运算法则和运算律学习式、方程、函数的相关内容,使学生的学习形成正迁移。

在“空间与图形”领域,教科书按照“从感性直观认识逐步上升到理性本质认识,从对静止状态的认识发展到对运动状态的认识,从定性描述向定量刻画过渡”的顺序编排这个领域的内容,注意在教科书各处对于“图形的认识”“图形与变换”“图形与坐标”“图形与证明”之间的联系。例如,教科书将等腰三角形的有关内容安排在了“轴对称”一章,学习等腰三角形时,充分利用它的轴对称性,发现等腰三角形的一些性质,为利用三角形全等的知识证明性质提供思路。将图形的运动与图形的认识、图形的证明有机整合,利用运动研究图形,得到图形的性质,再通过推理证明这些结论。

在“统计与概率”领域,注意渗透统计与概率之间的联系,通过频率来估计事件的概率,通过样本的有关数据对总体的可能性进行估计等。教科书安排的反映课程标准“实践与综合应用”领域的课题学习和数学活动,更侧重于体现探索性和研究性,更关注把数学和社会生活和其他学科知识联系起来,使学生进一步体会数学知识之间以及数学与外界之间的联系。

2.关于与实际问题的联系

教科书编写中,我们力求贯彻理论联系实际的原则,更加强调数学知识的背景(实际的和数学内部的),内容素材的选取力求贴近学生的生活实际和社会现实,并注意把所学到的知识应用到解决实际问题中去。教科书中方程、函数等内容均注意尽可能以实际问题为出发点和归宿,在分析和解决实际问题的过程中,建立数学模型,讨论有关概念和方法,然后再运用所学知识进一步探究新的实际问题,提高对数学内容及其应用的理解,从而体现“实践—理论—实践”的认识过程。例如,第3章“一元一次方程”中,全章改变了“概念——解法——应用”的传统教材结构,而以实际问题为主要线索,将概念与解法融于对实际问题的分析和解决过程之中。

模型思想是课标对“数与代数”领域的一个重要要求,教材的这种处理,体现了知识的来龙去脉,将原来教学中的“列方程”这一难点分散,有利于学生理解方程的本质,同时学生解决实际问题的能力也有提高。对此,也有一些老师提出了不同意见,认为将列、解方程合在一起造成了难点集中,一节课中列方程已经花了很长时间,没有时间再去讲解方程,造成学生解方程的技能下降,还是原来“概念——解法——应用”的模式有利于学生对基本技能的掌握。对此,教材修订时进行了充分的考虑。2007年后的新版教材在基本保持原来体系的基础上,降低了引入的实际问题的难度,增加了一些基本的解方程的例、习题,删去了一些较难的问题等。同时,教学时也应注意,教材“实际问题——方程——实际问题”的循环是一个总体上的要求,并不要要求每一节课都要学生经历这样的过程。例如在第一课时利用较简单的实例引入相关内容,介绍相应的解法后,后续课时可以安排纯粹解方程的练习课,以巩固基础知识和基本技能。

3.循序渐进的安排推理与证明的内容

对于推理能力的培养,教科书按照“说点儿理”“说理”“简单推理”“用符号表示推理”等不同层次分阶段逐步加深地安排,使推理论证成为学生通过观察、探究得到数学结论的自然延续。教科书从七年级开始渗透推理的初步训练,到七年级下学期的“第7章三角形”中结合三角形内角和开始正式出现证明。在以后各册中,对于推理证明的要求一以贯之,逐步培养学生的逻辑思维能力。对于教材的这种处理,实验教师还是充分认可的。也有教师提出,教材对于推理证明的这种安排很好,但教师教学中如何把握好各个阶段的具体要求?

对于一个需要推理证明的问题,从开始思考这个问题到最后表示出完整的证法是需要一个过程的,我们首先需要分析这个问题的各种条件,寻找证明思路,然后理清证明过程,最后才能把它完整的表达出来。同样,学生接触推理证明也需要一个循序渐进的过程。开始阶段,得到结论后,要问个为什么,要讲点道理,这时讲的道理可能不完整,但能把关键的内容说出来,这就是“说点儿理”,例如教材对“等角的补角相等”的处理。进一步,学生能把一个简单的思维过程完整叙述出来(文字语言),这就是“说理”,例如教材对“对顶角相等”的处理。再进一步,用简单的三段论推理的形式表述一个一步到两步的推理(这时有文字语言、也有符号语言),这就是“简单推理”,例如教材由“两直线平行同位角相等”推出“两直线平行内错角相等”。最后,能用数学符号语言完整的表述一个思维过程,就是“用符号表示推理”,即“证明”,例如教材中“三角形内角和定理”的证明。

4.概率内容的处理

了解概率的意义,是课标的要求,不同的教材对概率定义的处理方式有所不同。人教版课标教材修订前后对概率的意义的处理也不相同,修订前教材是“先介绍用频率估计概率,再讲简单事件的概率计算”,修订后是“先讲简单事件的概率计算,再介绍用频率估计概率”。为什么要做这样的改动呢?

在概率论的历史上,人们曾经从不同角度、在不同层次上给出概率的定义。这包括古典概率定义,几何概率定义、概率的频率定义、概率的公理化定义等。这四个定义,体现了概率定义“从简单到复杂、从特殊到一般、从具体到抽象”的逐步变化,也反映了人们对概率的认识所经历的过程。、

修订前教材中从掷硬币试验说起,是想借助具体问题说明频率的稳定性,引出概率的频率定义。但是实际教学中,学生对此的理解却存在较多障碍。由于频率是随机的,而概率是一个客观存在的常数,试验中出现频率与概率的偏离程度较大的情形是可能的,这是随机现象的特性。为什么大量重复试验中频率会稳定?是稳定在一个常数附近还是在一个范围?这个常数为什么是,而不是或?类似这样的问题学生理解起来是很困难的。修订后教材改变了顺序,先从掷硬币试验仅有两个结果说起,再分析硬币质地均匀使得两个结果出现的机会均等,这是客观的、有道理的,从而使学生较容易地接受了正面向上的可能性是。然后再说明大量重复试验会反映客观规律,而规律是合乎道理的,从而进一步解释在一般情形下频率的稳定性,引出概率的频率定义。这种做法使得教学过程顺利得多,学生对试验中出现的频率偏离概率的现象也能接受了。

三、对于一些具体问题的讨论

1.有理数乘法

对于有理数的乘法,不同的教材有不同的处理方式,有的直接是“规定”;有的采用“归纳”的方法,利用一些特殊值,从“正×正”到“正×负”再到“负×负”。在有理数的乘法中,对于“正×正”“正×负”“负×正”不难理解,问题的焦点在“负负得正”上。有理数的乘法法则可以说是一种“规定”,但是这种“规定”是有其合理性的,其核心就是要在正有理数扩充到全体有理数后,其运算律(特别是分配律)保持不变。例如,要使分配律保持不变,就必须有

(-3)×(-5)

=(-3)×(0-5)

=(-3)×0-(-3)×5

=0-(-15)

=15

这也就是“负负得正”。

人教版教科书在初次送审时。采用的是这种“保持分配律”的做法。这种做法,体现了数域扩充中的规定的合理性,但比较数学化,学生不易理解。为此,审查委员希望我们能找到一种联系实际的问题情境,体现有理数的乘法法则。这也就是目前教材的处理方式。采用联系实际的处理方式,对于“负负得正”来说,就是要找到两个具有相反意义的量,它们互相之间还要存在倍数关系。如果这两个量都在三维空间,必然引起混乱。为此,必需有一个量是时间,另一个在三维空间。经过反复考虑,教科书最终采用了小蜗牛在数轴上爬行的例子。

对于教科书的做法,也有一些教师表示不好理解。实际上,对于这个例子,我们可以把“过程”和“结果”一起来看。例如,对于“负负得正”的情况,由于小蜗牛一直在以每分2cm的速度向左爬行,3分前它应该在原点右边6cm处,也就是+6处,再加上向左爬是-2,3分前是-3,这就是(-2)×(-3)=+6。这样,给“负负得正”一个联系实际的直观解释,有利于引起学生兴趣,也有助于它们理解相关内容。

2.总体与个体的定义

关于总体和个体,在不同的概率统计的工具书、专著以及教材等文献上,有不同的界定。有的把全体研究对象作为总体,每一研究对象作为个体;有的把全体研究对象的数量指标取值(如身高)作为总体,每一研究对象的数量指标取值(如身高)作为个体。目前修订的人教版课标教材采用前一种方式。

实际上,每一种说法中,总体与个体是按照同一解释界定的。虽然两种说法不尽相同,但是前者所说的总体、个体与后者所说的总体、个体之间存在一一对应关系,这就是说两者所反映的总体和个体的从属关系是完全一致的。两者仅有说法上的差别,而本质相同,它们并不矛盾,没有对错之分。把所有研究对象作为总体,每一研究对象作为个体,能简明地反映调查范围及总体与个体的从属关系。在调查多种数量指标的问题中,对应于不同个体取多维数量指标值,表达更方便、简明和清晰。而直接把所有研究对象的数量指标取值作为总体,可以强调调查目的,而且对导出总体的分布的表述也比较自然。

教学中,在总体和个体的概念上,重点是它们之间的从属关系,而不在于不影响这种关系的的定义方式上。很多概念不必过度挖掘,只要学生明白其基本意义就可以,过分强调非本质的表述,可能导致重点的偏离。

3.信息技术的使用

现代信息技术的广泛应用正在对数学课程内容、数学教学、数学学习等方面产生深刻的影响,信息技术工具的使用能为学生的数学学习和发展提供丰富多彩的教育环境和有力的学习工具,重视现代信息技术的使用也正是本套教材的特点之一。教科书将科学计算器作为必学内容,可以利用科学计算器进行一些较复杂的运算,进行验算,帮助探索一些结论等。对于计算机软件,教科书安排了一个“信息技术应用”的选学栏目,包括利用计算机软件描述和分析数据,探索函数图形的性质,在图形的运动变化中探索其中不变的位置关系和数量关系等。有条件的学校,应当尽可能多的使用信息技术工具,帮助学生更有效地学习数学。

对于科学计算器的使用,应当注意在保证学生对基本的运算规则理解的基础上使用,要保证一定程度的笔算的训练,不能削弱对运算的基本要求。教科书在“有理数”一章修订时,将对使用计算器的介绍调整到有理数的四则运算后也说明了编者对这一点的考虑。

4.习题的处理

教科书对于练习、习题的处理,是按照“使练习、习题成为学生学习正文内容的自然延续”的原则来安排的。练习题的安排,不是简单的课时划分,而是根据内容的需要来安排。对于习题,改变了以往根据题目难度分为A、B组的方法,而是按照习题功能设置了“复习巩固”“综合运用”“拓广探索”三个层次。“复习巩固”层次的习题主要是让学生复习本节(章)所学的基础知识和基本技能;“综合运用”层次的习题体现了知识间的相互联系,是要学生综合运用本节(章)所学知识去解决问题(包括实际问题和数学内部的问题);在此基础上,“拓广探索”层次的习题的综合性、实践性更强(不仅是难度的提高),为学生提供了更充分发展的空间。

大学概率论知识点总结范文4

关键词 概率论与数理统计; 数学建模; 实践教学

基金项目 2015年度广东省高等教育教学改革项目;五邑大学2015年教学改革项目(JG2014011).

概率论与数理统计作为高等院校的一门重要基础课,主要教学目标是培养学生运用概率统计分析问题和解决问题的能力,使学生掌握概率论的基本概念与处理随机现象的方法,在许多的学科中都有着重要的应用价值。 它不仅为学生学习专业课程和解决实际问题提供了必不可少的数学知识和数学技能,而且也培养了学生的思维能力、分析解决实际问题的能力和自学能力,因此,概率论与数理统计教学质量的好坏将影响到后续一些课程的教学质量。

然而在实际教学过程中,教学和学习的效果都不理想,很多学生反映这门课程难懂、难学。 这在一定程度上影响了后续专业课程的学习,更无助于学生数学素养的培养。 传统的概率统计课程的教学,比较重视理论方面的教学,而对学生在实践方面的训练较少,学生虽然从课堂上了解了大量的概念、公式和定理,但对于它们的实际用途了解较少,很容易造成理论与实际的脱节。 而数学建模是应用数学知识解决实际问题的重要手段和途径,在概率论与数理统计中融入数学建模思想的研究与实践, 将有助于学生学习其理论知识,具有重要的理论和现实意义。

一、结合专业背景,改革教学内容

在今天教育改革的大背景下,面对着大学生生源不断扩大的现状,面对着大学毕业生种种就业去向,概率论与数理统计课程的教学决不应该仅仅定位于传授给学生概率知识,教给他们定义、公理、定理、推论,把他们当作灌注知识的“容器”。 相反,我们的教学,不仅要使学生学到许多重要的数学概念、方法和结论,更应该在传授数学知识的同时,使他们学会数学的思想方法,领会数学的精神实质,知道数学的来龙去脉,在数学文化的熏陶中茁壮成长。 为此,应在教学过程中,使学生了解到他们现在所学的那些看来枯燥无味但又似乎是天经地义的概念、定理和公式,并不是无本之木、无源之水,而是有其现实的来源与背景的。 而目前概率论与数理统计课程教学内容仍以“纯数学”理论为主,普遍没有结合各个专业的特点,没有涉及数学在相关专业中的应用内容,这不利于学生将数学理论应用于专业领域之中来解决相关专业中存在的问题。

通过对全国大学生数学建模竞赛题目的分析,可以发现,有不少题目涉及概率论和数理统计知识,如北京奥运会场馆的人流分布,DNA序列的分类、乳腺癌诊断问题、问题、电力市场的输电阻塞管理等问题。 由此可见,概率统计知识与人们的日常生活乃至科学技术都紧密相关。 因此,在课程的某些章节中融入数学建模的内容是完全可行的。

教师在授课过程中可从每个概念的直观背景入手,精心选择一些跟我们的生活密切相关而又有趣的实例,通过这些案例把所学的理论知识和实际生活结合起来,把抽象的数学与生动有趣的案例结合起来,调动学生的主动性和积极性,培养学生分析和解决问题的能力。 案例应适当延伸课本内容,吸取社会、经济、生活的背景与热点问题,特别是要结合学生的专业背景。 例如,工科专业应多选与计算机、通信、机械等相关的案例,而经济管理类则尽量选择与工商、保险相关的案例。 学生在分析和解决这些问题的同时,既能感受到将数学知识应用于实际的美妙,同时又能获得利用所学知识解决实际问题的成就感。 从而激发学生的兴趣。调动他们学习的积极性和主动性。

二、运用相关案例,改变教学方式

传统教学的讲授方式往往直白地将定义、定理等精确表达方式呈现在学生的面前,而这些经过加工的精练语言往往抹杀了最初的思想。 将数学建模思想引入课程教学中,可以弥补这种缺点,再现原始思想。 这就要解决一个关键问题,如何运用案例。 原始思想一般都来自于某些灵感的火花,或者说某种顿悟。 案例实际上起到了这种效果,让学生参与到案例的分析上来,提出自己的思想,在老师和其他学生的诱导和启发下,往往使得问题的本质浮出水面,老师需要做的就是总结和提炼这些闪光的思想。

可以在课前导入时引入数学建模思想。 概率论与数理统计比高等数学、线性代数的难度更深一些,对于学生来说更难以接受。 可以在每一节课前采用启发式,由浅入深,由直观到抽象,使学生真正掌握概率论与数理统计的概念,以便提高学生学习的乐趣。

在讲授过程中引入数学建模思想。 在理论上,更新传统教学观念,改变传统教学方式,提倡师生互动、启发式的教学方式。 从案例出发, 适当对一些问题进行讨论,在解决具体问题中引出一个相应的方法和理论。 这样容易引起学生的兴趣,可以活跃课堂气氛,激活学生思维,延伸和扩展知识面, 培养学生爱思考的习惯,使授课效果更好。

同时合理运用多媒体教学和统计软件,以调动学生学习兴趣为导向,打破以教师为主的教学模式,注重对学生创新思维能力和实践能力的培养。

另外,数学建模思维培养还须采用循序渐进的手段,要不断地和已有的教学内容有机结合,使数学建模思维的引领作用充分体现。 例如,由教师从历年的数学建模竞赛中选择一些优秀论文作为布置的题目,让学生分组课后研读讨论、讲解,既能使学生深入地理解知识点,又能锻炼学生团结合作解决问题的能力,然后在课堂上组织学生汇报交流,教师给予总结。

三、利用数学建模软件,提高学生计算能力

目前课程中的计算都局限于手工计算,而没有教给学生利用计算机技术,许多学生完成概率论与数理统计的学习后,在专业课程中,面对大量数据,需要运用统计思想方法分析时往往出现无从下手的现象,造成这种现象的原因有两方面:一是缺乏灵活运用所学知识解决实际问题的能力;另外就是数据量大,计算过于复杂,手工难以实现。 对于第一种情况我们通过将数学模型融入教学内容与学生所学的专业相结合来提高学生的运用能力。 针对第二种情况增加课程设计或计算机实践环节,结合概率统计案例及统计实践的形式,上课过程中为学生提供一些实验课题,每次实验时,教师给出所要实验课题的背景、实验的目的和要求及实验的主要内容等。 给学生演示一些统计软件中的基本功能, 展示统计方法的选择、统计模型的建立、数据处理以及统计结果分析的全过程,有助于学生掌握统计方法和实际操作能力。 同时引导学生自己动手去利用计算机及网络完成概率统计的有关试验,完成数据的收集、调用、整理、计算、分析等过程,培养学生运用软件技术去完成数据建模,让学生逐步提高运用数学统计软件解决实际问题能力,以及增强学生面向信息时代应具有的计算机应用能力。

四、改变课堂学习评价体系,课后作业引入建模思想

概率论与数理统计课程在总学时固定的情况下,要拿出一定的时间搞专门的数学建模训练,是很不现实的。 但在这有限的教学时段里,逐步渗透和融入数学建模的思想和意识是切实可行的,它完全可以在例题和习题之中加以体现。 布置课外作业为了考查学生。

对课堂内容完全掌握,对问题有更深刻的理解,只有把数学方法应用到实践中去,解决几个实际问题,才能达到理解、巩固和提高的效果。

针对概率统计实用性强的特点,我们可以布置一些开放性作业。 只有把某种思想方法应用到实践中去,解决几个实际问题,才能达到理解、深化、巩固和提高的效果。 如测量某年级男、女生的身高,分析存在什么差异;分析下课后饭堂人数拥挤程度,提出解决方案;分析某种蔬菜的销售量与季节的关系等。 学生可以自由组队,通过合作、感知、体验和实践的方式完成此类作业,在参与完成作业的过程中,不但激发了学习兴趣还培养了不断学习、勇于创新、团结互助的精神。 通过数学建模思想的融入,让学生自己去体会其重要性,激发学生学习概率论与数理统计的兴趣。

参考文献

[1]盛骤,谢式千,潘承毅。概率论与数理统计[M].北京: 高等教育出版社,2010.

[2]姜启源,谢金星,叶俊。 数学模型( 第四版)[M].北京: 高等教育出版社,2010.

大学概率论知识点总结范文5

关键词:数学建模;大学数学;基础理论教学;能力培养

作者简介:于林(1965-),男,山东滨州人,三峡大学理学院,教授。(湖北 宜昌 443002)

基金项目:本文系三峡大学教学研究项目(项目编号:J2010057)的研究成果。

中图分类号: 文献标识码:A 文章编号:1007-0079(2013)32-0124-02

大学生数学建模竞赛和数学建模活动在对大学生创新能力培养和数学技术应用能力培养中的重要作用已经是一个不争的事实,而在大学数学课程教学中融入数学建模思想的理念也被广大的数学教师所公认,并且取得了许多宝贵的实践经验。但是,在众多关于此问题的教学研究文献中,基本上都是仅仅就高等数学课程中那些本身就具有很强的应用性的数学方法和数学技术介绍了其在数学建模中的一些应用实例,而难得见到有关如何将原始的数学概念和抽象的数学定理的教学与数学建模相互联系的研究和分析。本文旨在通过对概率统计中两个最原始的概念(概率空间与统计结构)和高等数学中一个最抽象的定理(Weierstrass定理)的教学中如何融入数学建模思想的分析,揭示了在大学数学核心课程的教学中,数学建模与深化学生对基本概念的理解以及加强对抽象数学理论的实际应用能力的培养之间的关系。目的在于进一步探讨如何借助数学建模来激发学生对数学课程的学习兴趣,深化学生对抽象理论的理解。

一、最原始的概念,最基本的模型

众所周知,概率论和数理统计理论中有两个最原始的基本概念,一个是概率空间,另一个是统计结构(或者统计模型)。通常在“概率论与数理统计”课程教学中一般总是这样进行的,在给定了概率空间(Ω、F、P)之后,研究定义在其上的随机变量及其分布等性质;在给定了统计结构(或者统计模型) 之后,研究其上的样本、抽样分布及其由此而建立起来的统计推断问题。例如,一般的课本上几乎都是主要介绍建立在“正态分布总体”这样一种统计结构上的统计推断理论的。但是,只要稍微仔细思考一下,就会发现一个被忽略的问题:这种作为研究起点的所谓“概率空间”和“统计结构”是怎么来的?这一问题一般情况下被教师和学生所忽略,因为同学们只需要会做课后的习题就够了,而在每一个习题里这些所谓的“起点”早就被题目的设计者给设计好了。于是,时间久了,同学们也就习惯了,很容易由此而造成一种假象,似乎这些作为“起点”的东西是天生的,或者是自然就有的,很容易对这一课程中最基本的两个概念缺乏必要的理解。

然而,如果将这一问题与数学建模结合起来则情况就大不一样了。对于数学建模,任务不再是求解那种被人设计好的习题,而是面对的各类实际问题。运用概率分析的方法或者统计分析的方法对这些实际问题进行研究,但是概率分析理论、统计分析理论都不能直接作用于任何实际问题,这就需要首先确定这一实际问题所对应的“概率空间”或者“统计结构”是什么。事实上,“概率空间”就是架设在实际问题和概率分析理论之间的一座桥梁,而“统计结构”即是贯通在实际问题和统计分析理论之间的一条隧道。随机数学建模或者统计分析建模从对“概率空间”和“统计结构”的建立就已经开始了。

1.概率空间

(1)随机现象与随机试验。数学建模的研究对象都是一些实际的问题,如果这一实际问题表现为具有某种随机性的时候则被认为是一种随机现象,因此准备运用概率分析的方法进行研究。但是,概率理论直接的研究对象并不是随机现象,而是为研究随机现象所作的随机试验(Random Experiment)。为简单计,今后凡是在概率论中的随机试验皆简称为试验,并记之以英文字母E。对于数学建模者需要指出的是:对于同一随机现象,根据研究者的研究目的和研究方法的不同可以设计不同的随机试验。

例如,某同学打篮球投篮,这当然是一个随机现象,因为他可能投中也可能投不中,也就是说他每次投篮是否能投中具有随机性。假设现在要考察该同学投篮的命中率,可以设计如下两种不同的随机试验。试验E1是让该同学先后投篮10次,看他其中能投中几次;试验E2是请该同学连续投篮直到投中为止,看该同学共需要投几次才能投中。由于所设计的随机试验不同,因而所产生概率空间就不同,以后所运用的概率分析方法也就不一样。

(2)样本空间。当确定了随机试验E之后,称试验E的每一个可能结果为样本点(Sample Point),并称由全体样本点的集合为试验E的样本空间(Sample Space),并分别用希腊字母ω和Ω表示样本点和样本空间。

例如,对于上述的两个试验,试验E1的样本空间可以表示为,其中表示该同学在该次试验中共投中k个球;试验E2的样本空间可以表示为,其中表示该同学在该次试验中总共的投篮次数。注意,是一个有限样本空间,而则是一个无限样本空间。

(3)几何概率模型的实例。几何概率在现代概率概念的发展中起到了非常重大的作用。在19世纪,人们一度认为任何概率问题都有唯一的解答,然而Joseph Bertrand在1888年提出的一个问题改变了人们的想法,这就是贝特朗奇论(Bertrand’s paradox)。

Bertrand奇论:在一半径为1的园内“任意”作一弦,试求此弦长度l大于园内接正三角形的边长的概率P。

解法1:由于对称性,可预先固定弦的一端。仅当弦与过此端点的切线的交角在60°~120°之间,其长才合乎要求。所有方向是等可能的,则所求概率为1/3。

解法2:由于对称性,可预先指定弦的方向。作垂直于此方向的直径,只有交直径于1/4 点与 3/4 点间的弦,其长才大于内接正三角形边长。所有交点是等可能的,则所求概率为1/2。

解法3:弦被其中点位置唯一确定。只有当弦的中点落在半径缩小了一半的同心圆内,其长才合乎要求。中点位置都是等可能的,则所求概率为1/4。

于是得到了三个不同的答案,原因是什么呢?这是因为三种解法中使用了三个不同的随机试验,从而得到三种不同的概率空间。解法1 的样本空间Ω1是全圆周;解法2的样本空间Ω2是直径上点的全体;解法3的样本空间Ω3是二维区域C。这一例子说明,对于同一个问题,由于构造了不同的概率空间而可以得到不同的结论。相对于各自的概率空间,每一种解法都是正确的,而概率空间即是最基本的数学模型。

2.统计结构

(1)对统计总体的认识。正如“概率空间”是概率研究的起点一样,“统计结构”(或称统计模型)则是统计分析的起点。数理统计学就是这样一门学科:它使用概率论和数学的方法,研究怎样收集(通过试验或者观察)带有随机误差的数据,并在设定的统计结构(或称统计模型)之下,对这种数据进行分析(称为统计分析),以对所研究的问题做出推断(称为统计推断)。

面对应用中遇到的实际问题,统计结构是如何得来的呢?首先,来看一下如何认识统计的总体。所谓统计总体是指具有某种分布的随机变量(或随机向量)。所以,通常总体记为随机变量ξ,它服从某分布(族)P。

(2)统计结构(统计模型)。统计总体的随机变量量ξ及其服从的分布P统称为统计结构(或统计总体),P代表的实际上是一族分布函数。如果已经知道P的分布类型,即已知分布函数的类型,只是对其中的某个或者某几个参数θ未知,则问题就归结为根据样本值推断参数θ究竟取何值为好。此类统计模型就是参数模型,涉及的统计问题就是参数统计问题。如果连分布函数的类型也知道得很少,以至于不能给出参数模型,那么问题就成为非参数统计问题。

以对某物理量的测量问题为例:假设有某物理量μ,采取多次测量的方式以求得到该物理量真实值μ的估计。如何建立统计模型呢?

模型一:设总体随机变量,其中,所以

该研究者认为:测量仪器工作状态稳定,可以认为测量结果只存在随机误差。根据误差分析理论,此时有理由认为误差服从正态分布,由此总体随机变量。其中均值μ和方差都未知。所以该模型是一个含有两个未知参数的正态分布函数族。

现在再设想,假如该项测量工作是由一个非常专业的测量团队来完成的,因此事前可以假设测量的精确程度是已知的,即可以假设上述的方差已知,且取值为,于是又有如下模型。

模型二:设总体随机变量,其中,所以

当然,与建立模型二时相反,建模者可能十分悲观,或者事实上也是如此,这就是事前对该总体的信息收集实在太少。研究者只能肯定的是测量者既不会有意把数据夸大,也不会有意缩小,也就是测量所得的随机变量关于真实值应该是左右对称的,除此之外没有其它信息了。这样就只能设置模型如下:

模型三:设总体随机变量{对称分布}。

模型三得到的只是一个非参数统计模型,因此决定了首先必须运用非参数统计进行分析和研究,这较之前两种模型要复杂得多。

二、最抽象的定理,最直接的应用

定理

有界闭区间上连续函数的性质表现为一系列十分抽象的定理,Weierstrass定理是其中的一个。一方面,从理论上讲,它们在微积分理论体系中具有非常重要的地位;而另一方面,它们在形式上十分抽象。因此,一般情况下,学生们会认为其没有实用价值。其实正好相反,在数学建模中Weierstrass定理就经常被用到。该定理说:如果是上的一个连续复函数,那么便有多项式的序列,使得在上一致地成立。如果是实函数,则是实多项式。

2.在数学建模中的一个应用

土豆施肥效果分析:在土豆生长期间,施用不同量的氮(N)和钾(K)肥,土豆产量结果见附表1,求土豆产量与施肥量之间的关系。

首先,为了计算方便,对数据作中心标准化处理,即令:

如果说,施肥量x1、x2与土豆产量y有很密切的关系,则应该有,其中可能是线性函数,也可能是非线性函数,探求的具体形式是本题的目的,需要用回归分析方法。

(1)失败的线性回归模型。通常情况下,同学们首先想到的是线性模型:。根据最小二乘法计算得回归方程:。但是这个模型的效果究竟如何呢?计算多重判定系数得。显然,该线性模型对所给数据的拟合效果很差,由对数据的直观观察亦可以看出,用线性模型去拟合所给数据是不合适的。

(2)有效的多项式回归模型。显然,所求的函数关系肯定不是线性函数,而一定是一个非线性函数。然而,非线性函数有无数种,最有可能是哪一种呢?此时,Weierstrass定理帮了大忙。其实,无论是什么样的非线性函数,总可以用多项式去逼近。因此,可以考虑为多项式函数,且不妨从最低阶的二次多项式开始。

设模型为:,

同样根据最小二乘法计算得回归方程:。经计算多重判定系数为:。由此可知该模型拟合效果非常好,问题得到圆满解决。

三、结论

由上述实例分析可见,恰当地将数学建模融入大学数学课程教学,不仅有利于对学生数学应用能力的培养,而且更重要的是还可以帮助学生对抽象的基本概念和理论的理解。因此,对于更多的抽象概念和定理,如何引入适当的数学模型是一个非常值得进一步详细探讨的问题。

参考文献:

[1]李大潜。中国大学生数学建模竞赛[M].第四版。北京:高等教育出版社,2008.

相关推荐

热门文档

35 912322