高二数学教学计划精编5篇
【路引】由阿拉题库网美丽的网友为您整理分享的“高二数学教学计划精编5篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
高二数学教学计划【第一篇】
本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 。(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容。(3)解答有关数列问题时,经常要运用各种数学思想。善于使用各种数学思想解答数列题,是我们复习应达到的目标。 ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解。
②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;
③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整
体思想求解。
(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决。解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的。特别注意与年份有关的等比数列的第几项不要弄错。
一、基本概念:
1、 数列的定义及表示方法:
2、 数列的项与项数:
3、 有穷数列与无穷数列:
4、 递增(减)、摆动、循环数列:
5、 数列的通项公式an:
6、 数列的前n项和公式Sn:
7、 等差数列、公差d、等差数列的结构:
8、 等比数列、公比q、等比数列的结构:
二、基本公式:
9、一般数列的通项an与前n项和Sn的关系:an=
10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d0时,an是关于n的一次式;当d=0时,an是一个常数。
11、等差数列的前n项和公式:Sn= Sn= Sn=
当d0时,Sn是关于n的二次式且常数项为0;当d=0时(a10),Sn=na1是关于n的正比例式。
12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k
(其中a1为首项、ak为已知的第k项,an0)
13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);
当q1时,Sn= Sn=
三、有关等差、等比数列的结论
14、等差数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等差数列。
15、等差数列中,若m+n=p+q,则
16、等比数列中,若m+n=p+q,则
17、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等比数列。
18、两个等差数列与的和差的数列、仍为等差数列。
19、两个等比数列与的积、商、倒数组成的数列
、 、 仍为等比数列。
20、等差数列的任意等距离的项构成的数列仍为等差数列。
21、等比数列的任意等距离的项构成的数列仍为等比数列。
22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
23、三个数成等比的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3
24、为等差数列,则 (c0)是等比数列。
25、(bn0)是等比数列,则 (c0且c 1) 是等差数列。
四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。
26、分组法求数列的和:如an=2n+3n
27、错位相减法求和:如an=(2n-1)2n
28、裂项法求和:如an=1/n(n+1)
29、倒序相加法求和:
30、求数列的最大、最小项的方法:
① an+1-an= 如an= -2n2+29n-3
② an=f(n) 研究函数f(n)的增减性
31、在等差数列 中,有关Sn 的最值问题常用邻项变号法求解:
(1)当 0时,满足 的项数m使得 取最大值。
(2)当 0时,满足 的项数m使得 取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
以上就是高二数学学习:高二数学数列的所有内容,希望对大家有所帮助!
高二数学的教学计划【第二篇】
1、掌握空间直角坐标系的建立过程和相关概念
2、学会在坐标系中找出空间点的位置,会写一些简单几何体中有关点的坐标
1、经历运用空间直角坐标系来描述空间图形的过程,初步建立数感和空间感,从空间的点的坐标培养学生的空间想象能力、抽象思维和探索能力。
2、通过类比、迁移、的方法得出空间直角坐标系的建立的过程和空间点
的坐标确定的方法。
1、让学生认识到数学与日常生活的密切联系,从而能够积极的参与数学的学习活动。
2、通过学生的自主学习和合作学习,培养学生合作精神。
重点:空间直角坐标系的建立,点在空间直角坐标系中的坐标表示
难点:通过建立适当的空间直角坐标系来确定空间点的坐标,以及相关的应用。
教师准备:制作本节图、图、图、图、图和食盐
晶体模型的投影片
学生准备:直尺和正方形纸片
投影问题1、数轴ox上的点m,用代数的方法怎样表示呢?
问题2、直角坐标平面上的点m,怎样表示呢?
问题3、怎样确切的表示室内灯泡的位置?
(学生复习回顾后回答问题1和问题2,思考、讨论后回答)
点拨1、问题1和问题2是确定点在直线和直角坐标平面的位置的方法。
2、问题3是空间点的位置确定的问题,我们可以类比平面直角坐标的方法,建立空间直角坐标系来确定空间点的位置(板书课题)
投影问题4、空间中的。点m用代数的方法又怎样表示呢?
(教师设问)空间直角坐标系该如何建立呢?
投影(1)直角坐标系的建立过程
如图:oabc-dabc是单位正方体,以o为原点,分别以射线oa,oc,od的方向为正方向,以oa,oc,od的长为单位长,建立三条数轴: x轴、y 轴、z 轴。这时我们说建立了一个空间直角坐标系o-xyz,其中点o 叫做坐标原点, x轴(横轴)、y 轴(纵轴)、z 轴(竖轴)叫做坐标轴。通过每两个坐标轴的平面叫做坐标平面,分别称为xoy 平面、yoz平面、zox平面。(引导学生仔细观察和理解)
说明①三条数轴两两相互垂直且相交于原点o,同时都有相同的单位长度
②任意两条确定一个平面,共有三个平面,称坐标平面
③三个坐标平面把空间分成8个部分(让同学动手操作亲历感受)
投影(2)空间直角坐标系的画法
(3)右手直角坐标系
投影合作探究:
有了空间直角坐标系,那空间中的任意一点a怎样来表示它的坐标呢?
(设问)平面直角坐标系中的点与坐标有着一一对应关系,那么在空
间直角坐标系中点与三维有序实数组之间也有一一对应关系
吗?(学生自行阅读教材p134)
点拨是一一对应关系。
投影练习:如图,oabc—a’b’c’d’是单位正方体。以o为原点,分别以射线oa,oc, od’的方向为正方向,以线段oa,oc, od’的长为单位长,建立空间直角坐标系o—xyz.试说出正方体的各个顶点的坐标。并指出哪些点在坐标轴上,哪些点在坐标平面上y
(师生共同完成后,投影幻灯片)
投影想一想?
在空间直角坐标系中,x、y、z坐标轴上的点、xoy、xoz、yoz坐标平面
内的点的坐标各有什么特点?
(学生思考、讨论后教师总结)
投影例1:如图在长方体oabc-a1b1c1d1 中,|oa|=3,|oc|=4,|od1|=2,写出点d1,c,a1,b1的
坐标及bb1的中点m的坐标和a1aoo1的对角线的交点n的坐标。 目标:学生在教师的指导下完成,加深对点的坐标的理解。
(解的分析和过程见投影)
投影例2:结晶体的基本单位称为晶胞,下图是食盐晶胞的示意图(可看成八1个棱长是的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表绿2
原子。如图建立空间直角坐标系,试写出全部钠原子所在的位置的坐标。
目标:教师引导学生先阅读教材,根据建立的空间直角坐标系,写出所求
点的坐标。
(解的分析和过程见投影)
练习1、教材p136练习第2小题
1、空间直角坐标系的建立
2、空间直角坐标系的画法
3、空间直角坐标系中点的坐标表示方法及点与坐标的一一对应关系
教材p136练习第1、3小题。
空间直角坐标系
1、建立过程
2、空间直角坐标系画法
3、空间直角坐标系是右手系
1、坐标轴上点的坐标特征
2、坐标平面上点的坐标特点
高二数学教学计划【第三篇】
一。指导思想
高二文科第一学期包括了必修三和选修1-1两本教材,通过这一学期的教学,重点要培养学生利用数学各部分内容间的联系,特别是蕴含在数学知识中的数学思想方法,启发和引导学生学习类比、推广、特殊化、化归等数学思考的常用逻辑方法,使学生学会数学思考与推理,不断提高数学思维能力。
二。学情分析
本学期我担任高二(1、3)班的数学教学工作,在经历了文理科分科之后,我对两个班上所有学生的数学学习情况有了更进一步的了解。两个班中,女生占了将近70%,两个班的数学成绩可以说都很不理想,大部分的学生基础都很薄弱。一班的学生数学基础相对三班而言较好一点,但仍然缺乏自主学习的能力;三班中有很多的学生甚至有厌学、甚至弃学的现象。为了改变这种不良局面,使两班的学生成绩赶上来,针对学生的特点及班级的实际情况,特制订如下教学计划。
三。教学内容分析
本学期共有六章内容
必修三
1、算法初步
2、统计
3、概率
选修1-1
1、常用逻辑用语
2、圆锥曲线方程
3、导数及其应用
本学期的重点章节为必修三中的概率和选修1-1中的圆锥曲线方程和导数及其应用,其它章节相对来说高考的要求较低一些。
四。具体的教学措施
1、深入钻研教材,以教材为核心,以纲为纲,以本为本深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系和网络结构,细致领会教材改革的精髓,把握通性通法,逐步明确教材对教学形式、内容和教学目标的影响。做到对知识全面掌握,从而在教学中能有的放矢。
2、坚持向课堂45分钟要效益,立足课堂,加强课堂中的教学引导,激发和培养学生的学习兴趣和学习能力。
3、坚持每章一测的原则,让学生通过不断地考试练习,从而能够熟练地掌握和应用所学的知识,并且为后续的学习做好铺垫。
4、对学习能力较强、成绩较好的学生要加强其能力培养,为两年后的高考夯实基础。
5、对学习成绩处在中等水平的学生要狠抓基础落实,使他们将知识掌握并且能够进行基本初等应用。
6、对学习已经出现困难的学生则首先要求其掌握基础,能够对基础知识进行熟练掌握,并在此基础上进行提高。
7、对于厌学、甚至弃学的学生则要从培养他们的兴趣入手,兴趣是最好的老师,让这些学生首先对数学产生兴趣才能够进行更进一步的学习。
五。上学期工作中的优点和不足
高一整个学年中每学期都有两本必修教材,时间紧,能够做到的就是保质保量地上好每一节课,课后的作业进行认真布置和批改,并且能够及时的对固学案上的较难题目进行详细的讲解。
不足之处在于时间上的不足,导致不能够及时的对章节内容进行检测导致月考和期末成绩的不尽人意,部分学生也会产生懈怠的情绪。
高二数学教学计划【第四篇】
一、指导思想:
使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下:获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。立足我校学生实际,在思想上增强学生学习数学的积极性,在知识上侧重双基训练,加强对学生创新思维、知识迁移、归纳拓展、综合运用等能力的培养,全面提高学生的数学素养。
二、学生基本情况分析
由于高二进行文理分班,所教的文科实验班。学生的数学学习情况较好,学生较自觉,但是,学生对自己学习数学的信心不足,积极性和主动性需加强,在做题时的灵活性还不够,要加强举一反三的能力。
三、教学目标
针对以上问题的出现,在本学期拟订以下目标和措施。其具体目标如下:获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。提高数学的提出、分析和解决问题的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
四、教法分析
选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,以达到培养其兴趣的目的。通过观察思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
五、教学措施:
1、抓好课堂教学,提高教学效益。课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是提高数学成绩的主要途径。
①扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题。
②加大课堂教改力度,培养学生的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,通过知识的产生,发展,逐步形成知识体系;通过知识质疑、展活迁移知识、应用知识,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。
2、加强课外辅导,提高竞争能力。课外辅导是课堂的有力补充,是提高数学成绩的有力手段。
①加强数学数学竞赛的指导,提高学习兴趣。
②加强学习方法的指导,全方面提高他们的数学能力,特别是自主能力,并通过强化训练,不断提高解题能力,使他们的数学成绩更上一层楼。
③加强对边缘生的辅导。边缘生是一个班级教学成败的关键,因此,我将下大力气辅导边缘生,通过个别或集体的方法,并定时单独测试,面批面改,从而使他们的数学成绩有质的飞跃。
高二数学教学计划【第五篇】
教学目标
1、通过实例理解样本的数字特征,如平均数,方差,标准差。
2、能根据实际问题的需求合理地选取样本,从数据样本中提取基本的数字特征,并作出合理的解释。
重点难点
重点(1)用算术平均数作为近似值的理论根据。(2)方差和标准差刻画数据稳定程度的理论根据。
难点:(1)平均数对总体水平进行评价时的可靠性(和中位数和众数之间的联系)。(2)通过实例使学生理解样本数据的方差,标准差的意义和作用。
教学过程
算术平均数和加权平均数
(一)问题情境
某校高一(1)班同学在老师的布置下,用单摆进行测试,以检验重力加速度。全班同学两人一组,在相同条件下进行测试,得到下列实验数据(单位:m/s2):
问题1:怎样用这些数据对重力加速度进行估计?
一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数的中位数(median)。
一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数的中位数
一组数据中出现次数最多的那个数据叫做这组数的众数,
算术平均数是指资料中各观测值的总和除以观测值个数所得的商,简称平均数或均数。
问题2:用这些特征数据对总体进行估计的优缺点是什么?
21世纪教育网
用平均数作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数都有关系。对这些数据所包含的信息的反映最为充分,因而应用最为广泛,特别是在进行统计推断时有重要作用,但计算较繁琐,并且易受极端数据的影响。
用众数作为一组数据的代表,可靠性较差,但众数不受极端数据的影响,并且求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。
用中位数作为一组数据的代表,可靠性也较差,但中位数也不受极端数据的影响,也可选择中位数来表示这组数据的“集中趋势”。
平均数、中位数、众数都是描述数据的“集中趋势”的“特征数”,它们各自特点如下:
任何一个样本数据的改变都会引起平均数的改变。这是中位数、众数都不具备的性质,也正是这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息。
问题3:我们常用算术平均数 (其中ai(i=1,2,…,n)为n个实验数据)作为重力加速度的近似值,它的依据是什么呢?
处理实验数据的原则是使这个近似值与实验数据之间的离差尽可能地小,我们考虑(x-a1)2+(x-a2)2+…+(x-an)2,当x为何值时,此和最小。
(x-a1)2+(x-a2)2+<>…+(x-an)2=nx2-2(a1+a2+…+an)x+ a12+a22+…+an2.
所以当x=a1+a2+…+ann时离差的平方和最小。
(二)数学理论
故可用x=a1+a2+…+ann作为表示这个物理量的理想近似值,称其为这n个数据a1+a2+…+an的平均数或均值一般记为:
-a=a1+a2+…+ann.
(三)数学应用
例1 某校高一年级的甲、乙两个班级(均为50人)的语文测试成绩如下(总分:150分),试确定这次考试中,哪个班的语文成绩更好一些。
甲班:
112 86 106 84 100 105 98 102 94 107
87 112 94 94 99 90 120 98 95 119
108 100 96 115 111 104 95 108 111 105
104 107 119 107 93 102 98 112 112 99
92102 93 84 94 94 100 90 84 114
乙班
116 95 109 96 106 98 108 99 110 103
94 98 105 101 115 104 112 101 113 96
108 100 110 98 107 87 108 106 103 97
107 106 111 121 97 107 114 122 101 107
107 111 114 106 104 104 95 111 111 110
分析:我们可用一组数据的平均数衡量这组数据的水平,因此,分别求得甲、乙两个班级的平均分即可。
解:用科学计算器分别求得
甲班的平均分为,
乙班的平均分为,
故这次考试乙班成绩要好于甲班。
此处介绍Excel的处理方法。
例2:已知某班级13岁的同学有4人,14岁的同学有15人,15岁的同学有25人,16岁的同学有6人, 求全班的平均年龄。
解:13×4+14×15+15×25+16×64+15+25+6
=13×450+14×1550+15×2550+16×650
这里的450,1550,2550,650,其实就是13,14,15,16的频率。
[数学理论]一般地若取值为x1,x2,…xn的频率分别是p?1,p2,…pn,则其平均数为x1p1+x2p2+…+xnpn.
睡眠时间 人 数 频 率
[6,) 5
[,7) 17
[7,) 33
[,8) 37
[8,) 6
[,9] 2
合计 100 1
例3.下面是某校学生日睡眠时间的抽样频率分布表(单位:h),试估计该校学生的日平均睡眠时间。
分析:要确定这100名学生的平均睡眠时间,就必须计算其总睡眠时间。由于每组中的个体睡眠时间只是一个范围,可以用各组区间的组中值近似地表示。
解法1:总睡眠时间约为
×5+×17+×33+×37+×6
+×2=739(h)。
故平均睡眠时间约为
解法2:求组中值与对应频率之积的和
原式=×+×+×
+×+×+×=(h)。
答 估计该校学生的日平均睡眠时间约为
21世纪教育网
例4.某单位年收入在10000到15000、15000到20000、20000到25000、25000到30000、30000到35000、35000到40000及40000到50000元之间的职工所占的比分别为10%,15%,20%,25%,15%,10%和5%,试估计该单位职工的平均年收入。
分析:上述比就是各组的频率。
解 估计该单位职工的平均年收入为
12500×10%+17500×15%+22500×20%+27500×25%+32500×15%
+37500×10%+45000×5%=26125(元)。
答估计该单位人均年收入约为26125元。
例5.小明班数学平均分是78分,小明考了80分,老师却说他是倒数几名,你觉得这可能吗?(再看书P64思考)