首页 > 工作范文 > 工作计划 >

分数的基本性质教案设计大全(精彩8篇)

网友发表时间 1965618

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“分数的基本性质教案设计大全(精彩8篇)”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

分数的基本性质教案设计大全【第一篇】

有一些同学知道,还有一些同学不知道。不过没有关系,等我们学习了今天的内容之后,我相信在座的每一位同学都能够回答。你们有信心吗?恩,好,那我们就开始上课了!

(二)自主探究,发现规律。

1、出示例1的四幅图。

我们先来看一道题目。分别用分数表示每个图里的涂色部分。

(1)谁来说第一个?

全部答完后问:这里的1/3谁来说说它表示什么含义呢?3/9呢?

(2)师:这里有个1/2,你能说一个和1/2相等的分数吗?

2/4、4/8、8/16......还有吧,是不是还可以说出好多好多啊?

先别急,先来看看有哪些实验要求。

咱们这个实验的目的上一什么?验证什么?

咱们实验的方法有哪些呢?

实验有什么要求?操作有序什么意思呢?要听从小组长的安排。

1、实验目的:验证猜想。

我们要来比一比,哪个小组做的实验既快又好。一会儿,我们把他的作品展示一下。好,开始!

学生操作,老师巡视指导。

集体交流结果。

咱们刚才通过做实验,发现这些分数的大小怎样?也就是分数的大小不变。这些分数的大小相等,可是它们的分子、分母变了吧!怎么回事呢?这里面有什么规律呢?你发现了什么?能不能告诉老师。

把你的发现先和同桌交流交流。

生1:我发现由到,分子被扩大了2倍,分母也被扩大了2倍,所以它们是相等的。

师:还有谁想说说你的发现?

生2:我发现由到,分子被扩大了3倍,分母也被扩大了3倍,所以它们的大小相等。

师:换一组数据来说说自己的发现?

生:由到,分子、分母都被缩小了3倍,它们的大小不变。

师:为什么要0除外?

生:一个分数的分子和分母同时乘或除以一个相同的数(0除外),它们的大小不变。

我们一齐读一遍。

同学们想想看,这两个性质之间有什么关系呢?

根据分数与除法的关系,被除数相当于分数的分子,除数相当于分数的分母,在除法当中有商不变的性质,那在分数中也有它的基本性质。

师:好,那现在你知道阿凡提为什么会笑吗?他又说了哪些话呢?

师:2/6到3/9分子分母怎样变化的?分子和分母同时乘了,呢也就是说这里相同的数不仅可以指整数,还可以指小数。

(三)巩固练习,强化记忆。

好,那下面咱们就用今天学的知识来做几道题,好不好?

1、把书翻到61页,练一练第一题,请你涂一涂填一填。我看谁的动作最快。

集体交流。

2、下面我们来填空补缺想理由。(出示练一练第二题)。

他们这样填是根据什么?

3、出示练习十一第二题。

独立完成,集体订正。

(四)课堂作业,运用知识。

练习十一第三题。

(五)课堂,认识自己。

今天这节课,你学到了什么?

分数的基本性质教案设计大全【第二篇】

教学目标:

1、让学生理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

学习目标:

1、理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

重点难点:

2、让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

过程设计:

一、激情导入。

1、导入课题。

生读故事。

2、明确目标。

理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系;并会应用分数的基本性质。

3、预期效果。

达到教学目标。

二、民主导学。

任务一。

任务呈现。

动手操作验证性质。

自主学习。

师:拿出准备好的三张正方形纸。按照下面的要求来进行操作。请一同学读学习要求。

1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之二、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。

2、仔细观察三张纸的涂色部份,你们能发现什么?

师:同位分工合作完成。现在开始。

师选择一份作品粘贴在黑板上,请一同学说一说你们有什么发现?

请二至三位同学说一说。

生回答。师:现在你们知道孙悟空为什么笑了吗?请同学回答。

师:猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)。

下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。

生:我发现了二分之一的分子与分母同时乘以2得到了四分之二、四分之二的分子和分母同时乘以2得到了八分之四。

请二名同学重复。

生回答:一个分数的分子分母同时扩大相同的倍数,它们分数的大小不变。

请一至二名同学回答。

师板书:分数的分子分母同时乘相同的数,分数的大小不变。

师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几?

请一同学回答,

生:我们发现了8分之四的分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。

生:分数的分子分母同时除以相同的数,分数的大小不变。(二名学生重复)。

师板书:或者除以。

师:你能根据刚才总结的规律举一个例子吗?

让三名学生举出例子,师板书。并问:分子分母同时除以了几?

展示交流。

师指着板书说明:我们说分子分母同时乘或除以相同的数,分数的大小不变,那是不是包括所有的数呢?我们一起来看这样一个分数。板书八分之四同时除以0,问:这个式子成立吗?(打上问号)。

生:不成立,

师:为什么。

生:因为0不能作除数,

师:0不能作除数,所以这个式子是错误的。(画叉)。

师:我再说一个式子,我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)。

生:不成立,因为在分数当中分母相当于除数,除数不能为0。

生:0除外。

师板书0除外。

生:同时和相同的数。

师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题)。

师:我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。

生齐读二遍。

师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。

任务二。

任务呈现。

课本76页的例2,请一同学读题。

自主学习。

生独立完成,完成后和同位的同学说一说你是怎样想的。

展示交流。

每题请二名同学回答,(集体订正答案)。

检测导结。

1、目标练习。

76页“做一做”

练习十四的1、2、6、7题。

2、结果反馈。

生做完后同桌交流,再指名说说结果。

3、反思总结。

今天这节课你都学会了哪些知识?请大家谈谈学习了分数的基本性质的收获。

三、辅助设计。

教具课件设计。

小黑板正方形纸数块。

板书设计。

练习和作业设计。

1、完成课本76页做一做中的1、2题。

生独立完成,师指名回答。

2、完成练习十四中的1、2、5、6、7题。

师小结:这节课我们学习了分数基本性质,而且我们还学会了根据分数的基本性质把一个分数转化成和它相等的另外一个分数,其实生活当中还有许多的数学知识,如果你留心观察,你就能够发现,我希望大家都能做一个在学习上面的有心人。

文档为doc格式。

分数的基本性质教案设计大全【第三篇】

1、理解分数的基本性质。

2、初步掌握分数的基本性质。

3、培养学生观察、比较、综合、概括的能力和初步的逻辑推理能力。

理解与掌握分数的基本性质。 教材分析:分数的基本性质是在学习了商不变性质及分数与除法的关系的基础上进行教学的。它是今后学习约分和通分的依据,是分数四则运算的重要基础知识,是学生准确进行分数加减法计算的依据。

通过复习商不变的性质和分数与出发的关系,为学生探索新知提供了材料,作好了铺垫,也为后面沟通分数基本性质与商不变性质打下了基础。

在新知的引入,我设计了让学生动手操作的方法(折纸、涂色),调动学生的多种感观充分感知数学事实,来引导学生观察、思考,激发学生的求知欲,调动学生学习的积极性。

通过先进的电教手段,如:投影仪,电脑等多媒体辅助教学。用形象的电脑图象,以活泼的形式将抽象的数学概念转变为学生易于理解概念,激发学生的学习兴趣,结合一系列的具有针对性的提问,引导学生观察思考,共同讨论新知,自己归纳出分数变化的规律,即分于分母都乘以或除以相同的数,分数和大小不变。 通过电脑出示的`画象的逐步引入,使学生加深对分数基本性质的理解,逐步建立清晰的概念。这样让学生参与概念形成的整个过程,有利于学生学习的主动性,发展学生的逻辑思维。

在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,难度由浅入深。

第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏的形式,加深学生对分数基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。第5题,判断练习,意在使学生加深对新知识的巩固,纠正容易出错的地方。第6题是思考题,是为了满足学有余力的学生的需要,意在发展学生的智能。在联系的过程中,也采用了电脑与投影及录音机的有机结合有效地提高了课堂效率。

从左往右观察,探索分数的分子、分母的变化规律,引导学生去思考。讨论得出:分数的分子坟墓都乘以相同的数,分数的大小不变。 ,分数的分子分母有什么变化? 呢? 它们的大小又怎样呢?想一想,小姐出规律:分子、分母都除以相同的数,分数的大小不变。 归纳性质 谁能把上面的分数的分子分母都乘以或除以相同的数。两句话合成一句话来说。分数的分子分母都乘以或除以相同的数,分数的大小不变。 这里指的相同的数是指什么数? 指出:分母是0的分数是没有意义的。假如分子、分母都乘以或都除以0,也是没有意义的。所以0除外。相同的数可以是自然数,也可以是小数,也可以是分数。

(用计算机将题目演示在大屏幕上,全般一齐练习,再请个别学生说出答案,看答案是否和计算机演示的答案相同,全班同学来做小老师)

3、请找我的好朋友练习。(以游戏的形式来进行)

要求:(1)将几张写有分数的卡片发给几位同学,请 他们看清楚上面的分数。

( 2 )练习开始,请有卡片的同学注意观察,和老师受伤卡片上分数大小相等的同学走出来,看谁最快最好。 (先将卡片上的分数用大屏幕显示出来,便于全班同学练习。)

4、判断对错 (1) = = ( ) (2) = = ( ) (3) = = ( ) (4) = = ( )

(这道题用计算机一题一题来演示,让全班学生能用所学的知识来进行判断,并能说出错在哪里,可以请个别同学来回答,如果答对了计算机回发出以示奖励的音乐;错了会告诉同学错了,再试一次。这道题的形式,充分运用了计算机的多功能作用,较生动活泼,引起学生的兴趣,提高教学效果。)

5、思考练习题 = 课堂总结 总结本课内容,复述分数的基本性质。

分数的基本性质教案设计大全【第四篇】

(二)能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。

(三)培养学生观察、分析和抽象概括的能力,渗透事物是相互联系,发展变化的辩证唯物主义观点。

教具:投影片,三张相同的长方形纸,一面为白色,另一面分别给。

学具:每位同学准备三张相同的长方形纸片。

(一)复习准备。

1.口答:(投影片)。

根据120÷30=4,不用计算直接说出结果:

(120×3)÷(30×3)=();(120÷10)÷(30÷10)=()。

2.说一说依据什么可以不用计算直接得出商的?

3.说出商不变的性质。

教师:除法有商不变性质,分数与除法又有关系,分数有没有类似的性质呢?下面就来研究这个问题。

(二)学习新课。

(1)教师取出一张长方形白纸,说明这为单位“1”,再取出同样的两张白纸,重叠放在一起请学生观察,问:三张纸重叠后完全重合,说明什么?(三个单位“1”同样大)教师把三张纸分贴在黑板上。

教师请同学取出自己准备的三张长方形纸,并比一比是不是同样大。

教师:请分别把它们平均分成2份;4份,6份(折出来),并分别给其中的1份,2份和3份涂上颜色或画上阴影。然后把涂了颜色的部分用分数表示出来。

学生口答后,老师把黑板上的纸片翻面,露出涂了色的一面,板书:

教师:请比较这三个分数的大小?

你根据什么说这三个分数相等?

学生口答后老师用等号连结上面三个分数。

(3)请根据上面的研究,说一说你发现了什么规律?请概括地说一说。

学生口述分数基本性质的内容,老师把板书补充完整。

教师:想一想,如何用整数除法中商不变的性质说明分数基本性质?(举例说明)。

用学生自己的例题说明后,用投影片再说明:

2.把一个分数化成大小相等,而分子或分母是指定数的分数。

(2)口答练习:(学生口答,老师板书。)。

教师:利用分数基本性质,可以把分数化成大小相等而分子或分母是指定数的分数。

分数基本性质是在分数大小不变的前提下研究分子、分母的变化规律。所以在教学过程中,抓住“变化”作为主线,设计思考题引导学生观察、对比、分析,使学生在变化中找出规律、概括出分数的基本性质。安排例2,是让学生运用规律使分数产生变化。这样,从两方面方面加深学生对分数基本性质的理解。

在学生掌握了分数基本性质后,安排他们举例讨论,以沟通分数基本性质和商不变性质之间的内在联系,便于学生能把新旧知识融为一体。

在整个学习过程中都是学生活动为主,这样有利于培养学生观察、分析和抽象概括的能力。

新课教学分为两部分。

第一部分学习分数基本性质。分三层,通过学生活动,学生从直观上认识到分子、分母不相同的分数有可能相等;研究分子、分母的变化规律;概括分数基本性质,并用商不变性质来说明。

第二部分是应用分数基本性质,使分数按要求进行变化。分两层,根据分母需要,确定分子、分母需要扩大或缩小的倍数;根据分子需要,确定分子、分母需要扩大或缩小的倍数。

分数的基本性质教案设计大全【第五篇】

内容:p15、16例1、2,练习四第1-3题。

目标:

1.知识与技能:经历探索分数基本性质的过程、理解分数的基本性质。

2.过程与方法:能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

3.情感、态度与价值观:经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

过程:

一、创设情境,导入新课。

“大圣”分桃:

二、师生共研、发现规律。

师生共同揭秘“分桃”内幕。

人分桃的全过程,我们可将“齐天大圣”的分桃秘招公著如下:

1÷2=1/2=2/4=4/8。

从上面这三个分数的相等关系,你发现了什么?

从左往右看:

1/2=1×2/2×2=2/4。

从右往左看:

2/4=2÷2/4÷2=1/2。

1/2的分子、分母同乘2,分数大小不变;2/4的分子、分母同除以2,分数大小不变。

观察分子、分母的变化,同时归纳小结。

学生试,验证自己提出的观点是否正确。

小结:

分数的分子和分母同时乘上或者除以相同的数(零除外)分数的大小不变。

三、数学小报,再次验证。

1.指导阅读,并参照课本进行折纸(按小组活动)注意4张报纸要大小相同。

2.将折得的小报中数学趣题版用阴影显示出来。

3.将四张的折叠结果重叠,得出数学趣题版面大小。

4.针对式子进行口头表述。

四、理解性质、简单运用。

例2的教学。

(1)出示例2:把3/4、15/24化成分母都是8而大小不变的分数。

请同学们理清题意,然后进行转化。

(2)反馈。

(3)质疑。

让学生通过讨论,深化对分数大小不变的要求的'理解。

(4)议一议。

由于分数与除法的密切关系,所以分数的基本性质与除法的商不变性质是一致的。在实际应用中可以通用。

五、练习巩固、拓展提高。

1.课堂活动。

2.提取第一题的结果,进行深入思考:

结论:大小不变,分数单位要变。

六、全课总结:

七、作业:

练习四第1-3题。

文档为doc格式。

分数的基本性质教案设计大全【第六篇】

使同学进一步熟悉分数的基本性质,能正确地应用分数的基本性质,把一个分数化成指定分母(或分子)做分母(或分子),而大小不变的分数。

新授课。

课件。

一,迁移类推,导入新课。

2,在下面的括号内填上适当的数。[课件1]。

3/4=()/81/2=()/106/()=2/7。

2/3=()/18=16/2412/24=()/()。

二,探求新知,提高能力。

教学p108。例2:把2/3和10/24化成分母是12而大小不变的分数。

提问:a,怎样使2/3的分母变成12。

板书:2/3=2×4/3×4=8/12。

c,怎样使10/24的分母变成12。

d,根据分数的基本性质,要使分数10/24的大小不变,分子应怎样变化。

板书:10/24=10÷2/24÷2=5/12。

补充例题:把2和3/7,5/8化成分母是它们的最小公倍数而大小不变的分数。

分析:a,想想,它们的最小公倍数是几。

b,2是个整数,怎样化成分数呢以多少做分母,分子又是多少呢。

※p108。做一做1,2。

三,巩固练习,强化提高。

1,p109。2。

2,p109。4。

3,p110。10。

提问:这道题是在什么情况下份数的大小发生变化这个变化有没有规律呢。

述:一个分数的分母不变,分子扩大(或缩小)若干倍,分数大小也扩大(或缩小)相同的倍数;假如分子不变,分母扩大(或缩小)若干倍,分数大小反而缩小(或反而扩大)相同的倍数。即:一个分数的分母不变,分子乘以3,这个分数就扩大3倍;假如分子不变,分母除以5,这个分数就扩大5倍。

2,p110。11。

§要根据分数和除法关系,把分数的基本性质和除法中商不变的性质联系起来考虑,进行填空。

3,p110。考虑题。

§先用5升水桶量出5升水,倒入7升水桶中;再用5升水桶量出5升水,倒满已装入5升的7升水桶,这时5升水桶里剩下3升水;将7升水桶中的水倒掉,把5升水桶中的3升水倒入7升水桶中;再用5升水桶量出5升水,倒满已装3升的7升水桶,剩下的就是1升水。

四,家作。

p110。7,8,9。

分数的基本性质教案设计大全【第七篇】

1、经历知识的形成过程,理解约分的含义。

2、探索并掌握约分的方法,能正确地进行约分。

3、经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

教学设计。

(一)创境激趣。

(媒体演示并配音:话说猪八戒跟着猴哥,通过分西瓜了解了分数的神奇。今天八戒途径蛋糕店,了不得,这里的蛋糕真是香飘千里。毫不犹豫,八戒买下一个大蛋糕。不行,美味不可独享,怎么也得给师傅留一块。想呀,想呀,八戒想出了这样的四种分法〈出示教材第47页的图案〉,他想把阴影部分的留给师傅。)。

师:请同学们帮帮八戒,哪种分法给师傅的最多?

(评析:创设学生喜闻乐见的故事情境,有助于调动学生的学习情绪。一个好的开始,就是成功的一半。)。

(二)实践探究。

1、引导发现。

师:(出示电脑课件例图)谁来说说看,哪种分法给师傅的最多?

学生立刻发现:四种分法给师傅的都一样多。

师:为什么给师傅都是一样多?你能用学过的知识解释一下吗?

生1:我们可以用4个分数表示图中的阴影部分:1/3、2/6、4/12、8/24。我们学过分数的基本性质,所以知道这四个分数是相等的,所以4种分法给师傅的都一样多。

师:这4个分数之间到底都有怎样的关系?谁能说得更具体一些?

(小组内交流,每人选其中两个分数说一说。)。

小组交流得出:

(评析:利用知识的迁移,使学生能够运用学过的知识解决新的问题。教给学生思考的方法。)。

2、明确概念。

生1:它们的分子和分母都同时除以了一个相同的数,所以这些分数的大小都不变。

生2:我给他补充,是同时除以它们的公因数。

师:说得非常准确(师用彩粉笔板书),这里的除数都是什么数?

生:分子和分母的公因数。

师:像这样,把一个分数的分子、分母同时除以公因数,分数的值不变,这个过程叫做约分。

师:还有什么发现?

生3:约分后这些分数的分子和分母都越来越小,但分数值都相等。

师:很好,这是约分的特点,谁来再说一遍?

生4:最后一个式子的得数是1/3不能“再往下除了”。

生:因为1和3没有公因数。

师:回答得真棒。像1/3这样的分数,当分子和分母没有公因数的分数,我们把它叫做最简分数。

(评析:为学生提供了充分的时间和空间进行思考,帮助学生通过自己的观察和发现理解约分的含义,)。

生:是最简分数。

师:谁能举个例子来说明,什么是最简分数?

(评析:数学概念一定要联系实际才能理解得更加清楚,不能简单的机械记忆。)。

3、实践探究。

师:再看八戒为我们带来的这4个分数,哪个是最简分数?

生:这4个数中,1/3分数。

师:说说其它的3个为什么不是最简分数。

师:现在,请你从3个分数中任选一个进行约分,然后在小组内交流约分的方法。

师:请这两个同学来介绍一下约人的过程。

生2:我直接看,8和24的最大公因数是8,直接约分8/24=1/3。

(评析:培养学生的求异思维能力。要求学生不是简单的模仿,应该有自己独特的思维。同时为学生提供小组学习交流的时间与空间,更有助于内向的学生发表自己的见解。)。

师:比较两个同学的方法,有什么异同?你更喜欢哪一种?

生1:这两个同学都是用分子和分母的公因数去除,结果都是1/3。不同的地方,第一种方法,除了好几次,第二种方法只除了1次就行,所以我喜欢第二种方法。

师:为什么第二种方法可以只除1次?

生:因为他求出了分子和分母的最大公因数,所以只除了1次就行。

师:都这样想吗?

生:我喜欢第一种方法,因为计算准确,不容易错。

师:两种方法都可以,但是无论哪一种方法,我们在约分的时候都应该注意什么?

(评析:不同方法的比较使学生对于约分的方法有了更加深刻地认识。但是对于学生的选择应当给予充分的尊重,我们认为好的对于学生来说并不一定也是最好的。)。

生1:用公因数去除。

师:谁的公因数?能完整地说一遍吗?

生2:约分的结果应该是一个最简分数。

接着学生汇报2/6和4/12约分方法。

师:谁能完整的说一说约分的方法和应注意的问题。

(评析:教师的提问有思考的价值,能够引发学生的思考。但是当学生的发言无序而散乱时,教师充分发挥了主导的作用,提升学生的认识。)。

(三)、巩固练习。

师:八戒感谢大家帮助他解决了今天遇到的难题,想请大家一起去赏灯。让我们和八戒一同前往吧!

1、第48页第2题。

(1)学生独立连线。

(2)集体交流,为什么这样连?(媒体演示)。

2、第48页第1题。

(1)学生试做。

(2)集体交流。

师:约分时怎样才能又对又快,你的心得是什么?

生1:看分子和分母的个位,如果是2和5的倍数就可以直接除以2和5。

师:也就是说需要我们准确判断出是几的倍数,快速进行约分,对吗?

生2:像分子和分母之间是倍数关系的,可以直接得到几分之一。

……。

师:这些方法都很好,我们在约分的时候,注意观察和思考,不要盲目进行。

(评析:练习的设计应该是这样,每一道题都使学生有所收获,教师应该帮助学生及时收集这些方法,提高学生的熟练程度。)。

3、教材第48页第3题,比较大小。

(1)学生试做。

(2)小组内交流比较好的方法。

(3)反馈信息。

4、小小投递员。

师:噫!八戒哪里去了?(出示电脑课件)原来在这里。八戒又遇到了什么难题?

(课件演示)要求每个同学一封信,信封上的分数的分数值与哪个小房子上的数相同,就把信送到那所小房子的下面。

生完成送信活动,集体评议。

(评析:游戏是学生最愿意参与的学习方式,寓教于乐。)。

(四)全课总结:通过本课的学习,你有什么收获?

五、教学反思。

分数的基本性质教案设计大全【第八篇】

1、经历探索分数基本性质的过程,理解分数的基本性质。

2、能运用分数基本性质,把一个数化成指定分母(或分子)大小不变的分数。

3、经历观察、操作和讨论等数学活动,体验数学学习的乐趣及数学与日常生活密切联系。

运用分数的基本性质,把一个数化成指定分母(或分子)而大小不变的分数。

联系分数与除法的关系,理解分数的基本性质,沟通知识间的联系。

多媒体课件 长方形白纸、圆片,彩色笔等。

一、 创设情境,激趣导入

生1:四、五、六年级分的地一样多。

生2:……

师:到底校长分的公平不公平,我们来做个实验吧?

二、动手操作,探究新知

1、小组合作,实验探究。

师:请同学们拿出你们准备好的学具,按平时的分组习惯四人一组,用你们的学具来代替这块地,像校长一样来分地吧。

2、汇报结果

师生交流:你们是怎样做的?谁能说一说,请几个同学上台演示并口述演示过程。

生1:用三张同样的长方形的纸来代替这块地,分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生2:用三个同样的圆片分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生3:用三条线段分别画出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生4:把分数化成小数,他们的商也一样,所以三块地的面积一样大 。

生5:……

3、课件展示,得出结论。师:校长分的和你们一样吗?我们再来看看小电脑是如何拼的,(利用优质资源课件演示分地的过程,师生共同观察总结得到校长分的地一样多。)

(设计意图:这样设计的目的是为了更有利于学生主体个性的发挥,在探究活动中充分发挥学生的个体的潜能,给学生足够的时间和想象的空间,进行小组合作式的探究活动,让学生自由的猜想,使实验成为自己的需要,同时让学生思考用什么方法验证,使学生带着浓浓的兴趣进入探究新的学习活动之中。)

4、探索分数的基本性质。

师:三个年级分的地一样多,那么你们觉得、 这三个分数的大小怎么样?

生:相等。

师:同学们请看这组分数有什么特点?(板书 =)

生:分数的分子分母发生了变化分数的大小不变。

生:分子分母同时乘2,……

师:谁能用一句换来描述一下这个规律?

生:给分数的分子分母同时乘相同的数。(师随着板书)

师:同学们在反过来从右往左观察,分数的分子、分母有什么变化规律?

生:分数的分子分母同时除以相同的数。

师:像这样给分数的分子分母同时乘或(除以)相同的数,分数的大小不变。就是我们这节课学习的新知识。(板书 分数的基本性质)。

师:结合我们的预习,对于分数的基本性质同学们还有什么不同的意见?

生:0除外。

师:为什么0要除外?

生:因为分数的分母不能为0.

师:(补充板书0除外)在分数的基本性质中,那几个词比较重要?

生:同时 相同 0除外

师:(把这三个词用红笔加重)同学们有没有发现分数的基本性质和谁比较相似?

生:商不变的性质。

师:为什么?

生:我们学过分数与除法的关系,被除数相当于分子,除数相当于分母,所以他们是相通的。

师:数学知识中有许多知识如像商不变性质与分数的基本性质是一致的。因此平时学习中我们要触类旁通,灵活运用,才会举一反三。

三、应用新知,练习巩固。

(一) 练一练

(二)摸球游戏。老师手中有一个箱子,里面装有许多水果,水果上面写着不同的分数,如果你摸到一个水果,说出一个与它大小相等,而分子分母不同的新分数,这个水果就奖励给你。

(二) 判断(抢答)

1、 分数的分子、分母都乘过或除以相同的数分数的大小不变。( )

2、 把的分子缩小5倍,分母也缩小5倍分数的大小不变。( )

3、 给分数的分子加上4,要是分数的大小,分母也要加上4。( )

(四)测一测

1、把和都化成分母是10而大小不变的分数。

2、把和都化成分子是4而大小不变的分数。

3、的分子增加2,要是分数大小不变,分母应增加几?

四、总结。

1、这节课大家表现的都很棒,谁能说说你这节课你都知道哪些知识?

2、把板书最后补充成一条鱼,希望大家拥有一双明亮的眼睛,肚子里装满知识,在知识的海洋里遨游。(完成板书)

五、作业

练习册2、4题

板书设计:

分数的基本性质

给分数的分子分母同时乘或除以相同的数(0除外)分数的大小不变。

相关推荐

热门文档

40 1965618