首页 > 工作范文 > 范文大全 >

电网技术论文精编4篇

网友发表时间 764379

【导言】此例“电网技术论文精编4篇”的范文资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

智能电网技术【第一篇】

1智能电网采用电子电力技术的必要性和重要性

优化配置电网系统,提升电网安全系数

我国能源资源和用电需求地理分布上极不平衡,决定了我国必须走远距离、大规模输电和全国范围优化能源资源配置的道路。目前,尽管我国的电子电力技术日趋成熟,应用领域扩展,但是配电不足、交流输电装置欠缺等问题突出。自然、地质和气候等灾害严重制约着电网的安全性,因此,电力行业的发展需要采用先进科学的电力装置调节电力系统,增加电网建设,形成全国联网的交直流互联电网,排除电网故障的频发,提升智能电网自身的修复性、配电能力和对故障的敏感度。

满足国家发展对电能的需要,实现节能减排

近年来,社会主义市场经济快速发展,人民生活水平提高、国家工业化程度加强,对电能的数量和质量需求逐年递增。对我国电能质量造成影响的主要原因有光伏电站、风电场的并网,据统计由于电能质量不达标,造成的经济损失已非常严重。采用电子电力技术和转换设备对智能电网实行调控,对于改善电网电能质量、提高电能利用效率具有重要作用。电子电力技术的应用,能够节能15%~38%,面临我国能源和电能分布不均,电力系统难以适应清洁能源跨越式的发展情况,电子电力技术在智能电网中的应用,能够利用电子电力技术装置从发电、输电、变电、配电的全流程最大限度的实现节能减排。

2智能电网采用电子电力技术的应用措施

应用交换虚拟电路技术,促进智能电网的稳定性

交换虚拟电路技术,信息包交换虚拟线路面向连接的网络中,在2台计算机之间连接。在电力系统中,是1种方便灵活的交流输电装置,它能够对电力系统的电压实行有效调节,为直流换流器提供无功功率,以保证电压的稳定和增加系统输送点的能力。同时可以对整个电力系统低频振荡的阻尼进行加强。交换虚拟电路技术是提高我国智能电力系统的安全性、稳定运行、规避电网输电配电弊端的重要技术。它具有无功补偿功能,能够提高智能电网电能质量,改善电网的浮动性,提高智能电网的安全性和输电、配电能力。

应用晶闸管控制串联电容器补偿技术,提高智能电网电力输送能力

晶闸管控制串联电容器补偿技术,是可控串联补偿技术的实现方案之一。它通过采用金属氧化物限压器,阻尼器、电容器等能够有效地控制次同步谐振,降低智能电网输电中电能的过度消耗,提升智能电网的电能输送能力,从而使整个智能电网系统得到优化管理。我国是世界上为数不多的能够独立研制并使用晶闸管控制串联电容器补偿技术的国家。早在2004年,我国第1个晶闸管控制串联电容器补偿技术工程在甘肃建成。此后,世界中最大的晶闸管控制串联电容器补偿技术工程,在我国已经投入使用,对提高智能电网电力输送能力发挥了重要的作用。

应用无功损耗和变负荷调速技术,实现智能电网节能

在智能电网中,应用无功损耗技术重点是对变压器和电动机的运转功率进行调节,保证系统平稳的运行环境,降低设备的消耗。变负荷调速技术的使用,主要是把该技术放入电动机中,通过控制电动机调节速度,有效的节约能源。2大技术对出现大规模的电能供应不足、停电现象或者由于设备运转不畅问题造成的智能电网瘫痪等方面起到节约资源、降低能耗的作用。

3总结

电网技术【第二篇】

目前的科学设备投入力度小,大部分还是通过人工监视。这种传统的管理模式很难保证电压合格率,所以电网无功电压在目前看来最典型的就是技术和设备上存在的问题,深入加大电压管理也势在必行。

技术和设备上存在问题

技术和设备上常出现的问题主要包括以下几种:

①无功补偿容量不足,例如在新上工程中不安装电容器或容量偏小,甚至为提高其设备档次而牺牲电容器的做法,这类问题就会使无功补偿容量不足。

②电容器配置不合理,例如只在低压使用并联电容器或电容器的全部投入使用都可能会导致电容器不能正常投入使用,无法发挥应有的效益。

③变压器的额定限压不合理,由于网路增强供电半径的减小,就会导致配电网的电压很难满足要求且无法投入运行中。

无功电压管理上的问题

未从源头上规划好无功设备、运行管理之中的管理不到位和管理用户难度大是电压管理上存在的三大问题。要解决首要的源头问题,首先要采取环网布置,开环运行,同时侧重于电能质量和线损的管理。所以不能只考虑对电压的要求,还要进行科学配置。管理用户方面,用户配置不够合理,未规范管理电容器运行,未及时向供电部门提供信息导致变压器扩容时无法同期建成无功补偿设备。

2无功电压的管理

实现目标

为保持电网内被控电站低压侧母线电压在合理方位内,减少网损,减少变电站电容器投停和调整次数,实现自动管理,减轻人员劳动强度,迎合电力市场运营,但以深入开展为目标,各公司会越来越注重经济效益,而探寻到一条适合自己的管理途径,以此提高电压质量,保障电网安全。

解决措施

充分发挥无功优化系统的作用为最大范围地实现电压合格,减小电能损耗,保证设备使用次数,使整个运行过程安全进行,要以保证设备安全为前提,合理投入设备,使主变分接开关调节次数达到最小,提高电网调度水平,提高系统的稳定性,保证安全性,达到质量过关损耗降低的理想状态。

建立一个完善的网络结构规划、设计、建设一个完善的网络构建,首先要支持最高级的电压网络;其次是要优化低一级的电压网络,做到分层供电,采用环形布置的科学结构;再次是中、低压电网的相互配合,控制好供电半径在合理范围内;最后要保证无功负荷与无功电源之间的平衡。

注意电容器运行间存在的问题电容器在运行时会出现以下问题:在低压时,调度所并未下令使用所有的容器,而且功率因数和电压合格率的考核均未到达各变电站的标准。又因向主系统倒送之中,出现电压不正常、功率因数偏低等问题,未及时采取功率因数调节措施。所以一定要重视电容器的运行情况,及时采取功率因数调节的措施,加强对用户电容器的管理力度,定时询问电容器装置的状况。

加强对电压质量的管理加强电压质量,首先就是要对主要送电线路的导线进行检查和改造,扩大线径,提高受电电压,降低损耗。同时,调整配电线路,消除因线路过长对电压质量带来的不良影响。重视调压设备的建设对无功容量的配置,对变压器有载调压改造工作是刻不容缓,也是从根本上改变的途径。加强对无功电压的运行中的管理,明确职责,各部门员工各司其职。制订有效的考核管理办法,提高综合电压合格率,确保上传下达指标的达标。

加强无功优化补偿对变电站进行集中补偿,并利用并联电容器,最后通过有载调压主变进行调压。有载调压灵活、调压幅度大,且在电网无功不足的情况下能改变电压分布,尽管其对提供无功无济于事,但这一缺陷正好可由并联电容器加以弥补。投入电容器的使用不仅增加了网络的无功电力,还能提高网络电压。但如果进行较大幅度的调压,就会造成一定的浪费,成果并不经济,所以在应用并联电容器的情况下,调压应注意以下四点问题:

①在高峰负荷时,应首先投入电容器组的使用;在低谷负荷时,应先考虑电压的调整。

②一般变电站应以变压器调压为主要调压方式,并联电容器手段做好辅助调压的工作。

③利用并联电容器调整电压时,应保证电压突变幅度,还要对电容器容量较大时采取分组安装的方式,分组投切。

④对容量较大的电容器,其自动投切方式要采用电压控制为主的方式,从而保证能自动、适时地控制无功潮流和电压的变化。

3结束语

电网技术范文【第三篇】

关键词 广电网络 电气技术 电子技术 应用

前言:电气技术和电子技术的发展进一步实现了生活、生产智能化,为人们的生活提供了便捷性的同时,进一步优化了网络传媒的发展。近几年随着电气技术及电子技术在网络传媒中的应用,对网络传媒整体效能的优化起到了至关重要的作用。因此,进一步对电气技术及电子技术在网络传媒中应用进行分析具有重要的研究价值和意义。

一、广电网络中电气技术

照明电气技术

就当前广电网络中来看,其在演播室、控制室均需要照明电器技术的支持。目前,广电网络已经将电器照明技术应用在整个设备中[1]。广电网络在照明系统构建的过程中坚持以构建应急照明系统为主,降低由于紧急停电而造成的内部供电中断的现象。广电网络整个照明电气技术按照48h紧急供电中断的照明计算方法对其整体应用供电体系实施构建,进而从根本上保障照明的稳定性和可持续性。

防雷电气技术

防雷电气技术主要是利用各种仪器和设备在保障基础工作正常运行的基础上,对防雷系统实施保护和构建[2]。由于广电网络传媒中心的整体特殊性,在其综合防雷电气体系构建的过程中采用了当类装置等电位链接,进而形成一个统一的防雷到点系统,对整个系统的线路实施布置,有效的预防雷电电磁波脉冲对广电网络电流和电压带来的影响,进而保障设备运行的稳定性和安全性。此外,广电网络还利用防雷电气技术实现了消防联动系统的构建,实现24H监测联动消防指令,进而为广电网络的整体安全性提供了保障。

变电电气技术

变电控制是维持广电网络电源稳定,实现广电网络中心合理用电的关键。其在变电控制的过程中利用电气技术实现了核心变电控制系统,对整个广电网络中心计算机的系统和各个演播室、演播厅的用电实时集中配置,以保障高强度符合支撑。此外,广电网络在变电电气技术的应用上还是实现了高低电压系统等级控制系统,进而对供电故障时电流和电压突然降低和故障排除后电流电压突然升高带来了供电系统稳定性实施技术处理,实现变电系统的稳定性和灵活性。

二、广电网络中电子技术

双向改造电子技术

双向改造电子技术主要是利用FTTH技术和无源光网络PON技术实现光纤到户和纯介质网络传输的一种电子技术。广电网络应用双向改造电子技术将内部的数据传输实现光波传输,加强了数据协议灵活性,进而优化了数据传输的可靠性,实现网络透明化安全传输。便给利用无光源网络PON技术降低了数据传输过程中电磁波对传输网络造成的影响,实现多兆为双向改造。广电网络应用双向改造电子技术进一步对内部网络的传输和改造提供了技术支持。就当前广电网络双向改造电子技术的应用来看,其实现有线电视服务下的单向下行广播传输方式就是利用了双向改造电子技术。

HFC电子技术

HFC电子技术是利用大容量传输实现双向传输的一种电子技术,广电网络利用HFC电子技术实现了光纤与同轴电缆结合的传输技术构建,实现了帧频变换,多兆位数据服务的功能,进而完成了电子技术工作的开展。此外,广电在应用HFC电子技术的过程中利用工作人员全程根本实现了视频服务和IP服务技术改进,提高了整体网络视频的输出质量和输出纠错能力。

数据传输电子技术

广电网络中应用数据传输电子技术主要是对网络内信号、音频、视频等实现基本数据传输凭条的构建[3]。在数据传输电子技术的应用下广电网络实现了射频总线与双绞线结合的长距离、大范围数据传输,保障了不同用户之间数据传输的距离。

智能化电子技术

智能化电子技术的应用进一步促进了广电网络智能化发展,从网络运营的角度,实现了整个广电IT系统的智能化设计,进而优化了广电网络的工作效率,为广电网络传媒的发展提供了业务升级。

三、总结

通过本文的分析能够看出当前我国广电网路技术改革和创新的过程中应用了照明、防雷和变电电气技术,并且结合了双向改造、HFC、数据传输和智能化电子技术,为广电传媒的安全、运行和传输等提供了保障,进一步优化了而广电网络核心技术,优化了广电网络在传媒领域的市场竞争优势,进一步为我国网络传媒的发展指明了方向。

参 考 文 献

[1]万志豪。论电力电子技术在电气控制中的应用[J].电子技术与软件工程,2016,04(24):243.

电网技术论文范文【第四篇】

保障充换电设施及时接入

标准第条规定,配电网发展应考虑充换电设施的发展与建设的需求,合理满足电动汽车接入及充电负荷增长的要求,有利于促进电动汽车的应用与发展。目前,我国电动汽车仍处于发展初期,充换电设施所提供服务的便捷性,对拓展电动汽车市场具有十分重要的促进作用。电网企业一方面要履行企业责任,从电网供需角度满足用户的充电需求,另一方面要承担社会责任,从国家战略角度推动电动汽车的应用。标准第条规定,充换电设施接入电网所需线路走廊、地下通道、变/配电站址等供电设施用地应纳入城乡发展规划,与配电网规划相协调。充换电设施已经成为保障城市交通运输系统顺畅运转的重要基础设施之一,其建设用地被纳入城市总体规划统筹进行考虑。因此,要求充换电设施布局规划及其接入系统的电网规划应同步开展,协调衔接,落实并保障充换电设施接入系统工程的用地需求,从源头上避免城市土地资源紧张导致的工程落地困难。

保障充换电设施可靠用电

标准第条规定,充换电设施接入电网应充分考虑接入点的供电能力,便于电源线路的引入,保障电网安全和电动汽车的电能供给。研究表明,电动汽车的大量应用,将带来系统峰谷差增大、电压骤降、谐波污染等多方面的问题,充换电设施的接入首先要从供电电源着手,从电网的基础条件上满足充换电设施的用电需求,并提供合格的电能质量。标准第条规定,当充换电设施建设在规划实施配电自动化的地区,接入设备应满足配电自动化技术相关标准要求。配电自动化是通过安装在一次设备上的自动化终端装置实现对配电网运行的监测和控制,通过对故障判断、隔离和修复的快速响应,提高配电网供电可靠性,改善电能质量。以二次系统的丰富和建设为拓展手段,有计划地对充换电设施配套的电网工程实施配电自动化建设与改造,充分保证充电用电的可靠性和安全性。

满足电动汽车双向互动要求

标准第条规定,当充换电设施具有与电网双向交换电能的功能时,应符合Q/GDW1738《配电网规划设计技术导则》关于电源接入的相关标准要求。随着电池价格的降低和循环寿命的延长,动力电池可以作为分布式储能单元向电网输送电能,发挥削峰填谷的调节作用。当电动汽车反向送电时,应遵循以下原则:1)应对充换电设施接入的配电线路载流量、变压器容量进行校核,并对接入的母线、线路、开关等进行短路电流和热稳定校核。2)在满足供电安全的条件下,接入单条线路的送电总容量不应超过线路的允许容量;接入本级配电网的送电总容量不应超过上一级变压器的额定容量以及上一级线路的允许容量。3)具有双向交换电能的充换电设施接入后,配电线路的短路电流不应超过该电压等级的短路电流限定值,否则应重新选择接入点。4)具有双向交换电能充换电设施接入点应安装易操作、可闭锁、具有明显开断点、带接地功能、可开断故障电流的开断设备。5)具有向电网输送电能的充换电设施,其向电网注入的直流分量不应超过其交流定值的%。

2技术原则

电压等级选择

标准第条规定,充换电设施所选择的标称电压应符合国家标准GB/T156《标准电压》的要求。供电电压等级应根据充换电设施的负荷,经过技术经济比较后确定。当供电半径超过本级电压规定时,应采用高一级电压供电。标准特别强调了要根据充换电设施的负荷选定供电电压等级,负荷范围按照导线的安全载流能力,并考虑一定裕度予以确定。如单相220V的240mm2的铜缆,最大供电负荷不超过11kW,因此单台充电机按10kW控制;三相380V供电负荷,参照《国家电网公司业扩供电方案编制导则》的要求,按接入单台充电机不超过100kW考虑,允许多台充电机同时接入。对于站内布置的直流充电机,380V线路也允许120kW的充电设备接入。供电半径的校核,除了要考虑线路载流能力外,还要结合线路功率损耗、电压损失等情况综合确定,并按照国标GB/T12325《电能质量供电电压允许偏差》的要求进行控制。1)10kV及以下三相供电电压允许偏差为标称电压的±7%。2)220V单相供电电压允许偏差为标称电压的–7%与10%。

用户等级选择

接入点选择

标准第条规定,220V充电设备,宜接入低压配电箱;380V充电设备,宜接入低压线路或配电变压器的低压母线。标准第条规定,接入10kV的充换电设施,容量小于3000kVA宜接入公用电网10kV线路或接入环网柜、电缆分支箱等,容量大于3000kVA的充换电设施宜专线接入。标准采用“宜”的口吻给出充换电设施的建议接入点,不强制执行,220/380V针对充电机,10kV针对充电站。国家标准规定的交流充电机额定电压为220V,额定电流16/32A,额定充电功率/7kW;直流充电机额定电压380V,额定电流一般不超过250A,额定充电功率有40kW、80kW、120kW等几种。标准明确规定:专线接入的充换电设施,其容量应超过3000kVA。专线接入的优势在于便于容量的管理与控制,有利于提高电网运行的安全,但占用电网10kV间隔资源,因此标准对专线的使用没有做强制规定。但对于快速充电站,考虑到充电时间短,充电功率的冲击特性强等特点,标准的编制说明别强调容量大于3000kVA的快速充电设施,要采用专线接入。

供电电源

标准第条规定,充换电设施供电电源点应具备足够的供电能力,提供合格的电能质量,并标准第条规定,供电电源点应根据城市地形、地貌和道路规划选择,路径应短捷顺直,避免近电远供、交叉迂回。这两项条款,分别从电源点的质量性能和空间布局的角度,规定了电源点确定的一般原则。一方面,电源点要能够满足充换电设施的用电需求,按照充换电设施的远景设计容量,选择上级电源,同时能够提供合格的电压、频率等电能质量;另一方面,要求结合地理环境,就近选择,减少与道路或其他线路的交叉,为充换电设施供电线路的安全运行、良好维护奠定基础。

无功补偿及设备选型

标准第—条规定了充电设施无功补偿的要求,充换电设施的本质为用电客户,其无功补偿遵循用户无功补偿的规定配置即可。即按照“同步设计、同步施工、同步投运、同步达标”的原则规划和建设,接入10kV电网的充电设施功率因数应不低于,非车载充电机功率因数应不低于,不能满足要求的应安装就地无功补偿装置。标准第条规定,充换电设施接入的供电线路、变/配电设备选择应满足Q/GDW1738《配电网规划设计技术导则》的有关要求。即供电线路应有较强的适应性,导线截面宜综合充换电设施远期规划容量、线路全寿命周期一次选定。220/380V线路原则上不宜超过400m,10kV供电半径原则上不宜超过5km,超出范围的应核定末端电压质量。标准第条特别强调,负荷大于100kW的充换电设施,宜采用专用配电变压器供电。本条款主要针对分散式充电桩,采用专用配电变压器,将充电负荷与其他用电负荷分离,有利于无功补偿配置及谐波治理。

电能质量

标准第—条规定,充换电设施接入公共连接点谐波电压的限值(相电压)要求应符合GB/T14549《电能质量公用电网谐波》规定,注入公共连接点的谐波电流允许值应符合GB/T14549规定。标准第条规定,充换电设施接入公共电网,公共连接点的三相不平衡度应满足国标GB/T15543《电能质量三相电压不平衡》规定的限制,由各充换电设施引起的公共连接点三相电压不平衡度不应超过%,短时不超过%。充电机是一类典型的电子型AC/DC电能转换设备,其内部的电力电子元件在工作中会产生大量的谐波,因此要求严格控制充换电设施产生的谐波电压和谐波电流,满足国家标准的有关规定。此外,对于低压220V接入的充电设备,要特别注意保证三相平衡。

3典型应用

某城市的充换电站工程建设规模如表4所示。充电部分站区内设置乘用车快充车位2个(配置2台40kW直流充电机)和慢充车位4个(配置4台7kW交流充电机),远景预留大巴车车位2个(配置2台100kW直流充电机)。换电部分内置乘用车换电工位1个,配置2个电池转运仓、2个移动充电仓(含40台分箱充电机)、40箱标准电池箱以及一台手动电池运转小车,本期设计换电能力40车次/日。按照《规范》要求,和7kW交流充电机选用低压220V供电,40kW和100kW直流充电机选用低压380V供电。该充换电站建设于次要交通干线,按照普通用户设计,采用单回10kV线路供电,供电电源取110kV变电站A的10kV出线。站内供电系统的主变容量一期为400kVA,二期为800kVA,故不选用专线接入。一期按单母线建设,二期按单母线分段接线建设。由于城市主要采用10kV电缆供电,充换电站由环网柜(电缆分支箱)接入系统,因此,一期建设采用集中补偿的方式,在低压母线安装一台100kVA(380V,150A)的有源滤波器对无功功率和谐波进行综合补偿。二期需对每条低压母线分别进行补偿。

4结论

相关推荐

热门文档

48 764379