首页 > 工作范文 > 范文大全 >

二次根式示例【实用8篇】

网友发表时间 1949555

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“二次根式示例【实用8篇】”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

二次根式示例【第一篇】

3.进一步体验二次根式及其运算的实际意义和应用价值。

本节课的重点是:二次根式及其运算的实际应用;难点是:例7涉及多方面的知识和综合运用,思路比较复杂。

1.解决节前问题:

归纳:

在日常生活和生产实际中,我们在解决一些问题,尤其是涉及直角三角形边长计算的问题时经常用到二次根式及其运算。

1、:如图,扶梯ab的坡比(be与ae的长度之比)为1:,滑梯cd的坡比为1:,ae=米,bc=cd。一男孩从扶梯走到滑梯的顶部,然后从滑梯滑下,他经过了多少路程(结果要求先化简,再取近似值,精确到米)。

教学程序与策略。

完成课本p17、1,组长检查反馈;

1:如图是一张等腰三角形彩色纸,ac=bc=40cm,将斜边上的高cd四等分,然后裁出3张宽度相等的长方形纸条。(1)分别求出3张长方形纸条的长度。(2)若用这些纸条为一幅正方形美术作品镶边(纸条不重叠),如右图,正方形美术作品的面积最大不能超过多少cm。

师生共同分析解题思路,请学生写出解题过程。

1.谈一谈:本节课你有什么收获?

2.运用二次根式解决简单的实际问题时应注意的的问题。

1:作业本(2)。

2:课本p17页:第4、5题选做。

二次根式示例【第二篇】

1、知识与技能:了解二次根式的概念,能求根号内字母范围,理解二次根式的双重非负性,并能应用它解决相关问题。

2、过程与方法:进一步体会分类讨论的数学思想。

3、情感、态度与价值观:通过小组合作学习,体验在合作探索中学习数学的乐趣。

1、重点:准确理解二次根式的概念,并能进行简单的计算。

2、难点:准确理解二次根式的双重非负性。

课本第2― 3页

一、 课前准备(预习学案见附件1)

学生在家中认真阅读理解课本中相关内容的知识,并根据自己的理解完成预习学案。

二、 课堂教学

(一)合作学习阶段。

教师出示课堂教学目标及引导材料,各学习小组结合本节课学习目标,根据课堂引导材料中得内容,以小组合作的形式,组内交流、总结,并记录合作学习中碰到的问题。组内各成员根据课堂引导材料的要求在小组合作的前提下认真完成课堂引导材料。教师在巡视中观察各小组合作学习的情况,并进行及时的引导、点拨,对普遍存在的问题做好记录。

(二)集体讲授阶段。(15分钟左右)

1. 各小组推选代表依次对课堂引导材料中的问题进行解答,不足的本组成员可以补充。

2. 教师对合作学习中存在的普遍的不能解决的问题进行集体讲解。

3. 各小组提出本组学习中存在的困惑,并请其他小组帮助解答,解答不了的由教师进行解答。

(三)当堂检测阶段

为了及时了解本节课学生的学习效果,及对本节课进行及时的巩固,对学生进行当堂检测,测试完试卷上交。

(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)

三、 课后作业(课后作业见附件2)

教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。

四、板书设计

课题:二次根式(1)

二次根式概念 例题 例题

二次根式性质

反思:

二次根式示例【第三篇】

鉴于学生的特点及教材的特点,本节课主要采用“互动式”的课堂教学模式及“谈话式”的教学方法,以此实现生生互动、师生互动、学生与教材之间的互动。

(一)在师生互动方面,教师注重问题设计,注重引导、点拨及提高性总结。使学生学中有思、思中有获。如本节课开始,出示书中例题1:

让学生先进行思考,解答。然后同学说出怎样进行二次根式的混合运算。

强调:运算顺序及运算律和有理数相同。

(二)在学生与学生的互动上,教师注重活动设计,使学生学中有乐,乐中悟道。教师设计一组题目,让学生以竞赛的形式解答,然后以记成绩的方法让其它同学说出优点(简便方法及灵活之处)与错误。由于本节课主要以计算为主,对运算法则及规律性的基础知识,学生很容易掌握而且从意识上认为本节课太简单,不会很感兴趣,所以为了提高学生的学习兴趣及更好的抓好基础,提高学生的运算能力,如此这般设计。

(三)在个体与群体的互动方式上,教师注重合作设计,使学生学中有辩,辩中求同。如本节课中对难点问题:“化去根号内分母”的教学,出示一个题目,让学生思考,找个别学生说出自己的想法,然后其它同学补充完成。

学生的主体意识和自主能力不是生来就有的,主要靠教师的激励和主导,才能达到彼此互动。正是在这一教育思想的指导下,追求学生的认知活动与情感活动的协调发展,有效地唤起学生的主体意识,在和谐、愉快的情境中达到师生互动,生生互动。互动式教学模式的目的是让教师乐教、会教、善教,促使学生乐学、会学、善学,从而优化课堂教学、提高教学质量此文来自优秀,在和谐、愉快的情景中实现教与学的共振。

二次根式示例【第四篇】

(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;。

(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.

教学问题诊断分析。

本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.

在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.

本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.

教学过程设计。

1.复习引入,探究新知。

我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.

问题1 什么叫二次根式?二次根式有哪些性质?

师生活动 学生回答。

设计意图乘法运算和二次根式的化简需要用到二次根式的性质.

问题2 教材第6页“探究”栏目,计算结果如何?有何规律?

师生活动 学生计算、思考并尝试归纳,引导学生用自己的语言描述乘法法则的.内容.

设计意图学生在自主探究的过程中发现规律,运用类比思想,由特殊到一般地,采用不完全归纳的方法得出二次根式的乘法法则.要求学生用数学语言和文字分别描述法则,以培养学生的符号意识.

2.观察比较,理解法则。

问题3 简单的根式运算.

师生活动 学生动手操作,教师检验.

问题4 二次根式的乘除成立的条件是什么?等式反过来有什么价值?

师生活动学生回答,给出正确答案后,教师给出积的算术平方根的性质.

设计意图让学生运用法则进行简单的二次根式的乘法运算,以检验法则的掌握情况.乘法法则反过来就是积的算术平方根的性质,性质是为运算服务的,积的算术平方根的性质将积的算术平方根分解成几个因数或因式的算术平方根的积,利用整式的运算法则、乘法公式等可以简化二次根式,培养学生的运算能力.

3.例题示范,学会应用。

例1化简:(1)二次根式的乘除;(2)二次根式的乘除.

师生活动 提问:你是怎么理解例(1)的?

师生合作回答上述问题.对于根式运算的最后结果,一般被开方数中有开得尽方的因数或因式,应依据二次根式的性质二次根式的乘除将其移出根号外.

再提问:你能仿照第(1)题的解答,能自己解决(2)吗?

设计意图通过运算,培养学生的运算能力,明确二次根式化简的方向.积的算术平方根的性质可以进行二次根式的化简.

例2计算:(1)二次根式的乘除;(2)二次根式的乘除;(3)二次根式的乘除。

师生活动 学生计算,教师检验.

(3)例(3)的运算是选学内容.让学有余力的学生学到“根号下为字母的二次根式”的运算.本题先利用积的算术平方根的性质,得到二次根式的乘除,然后利用二次根式的乘法法则,变成二次根式的乘除,由于二次根式的乘除可以判断二次根式的乘除,因此直接将x移出根号外.

设计意图引导学生及时总结,强调利用运算律进行运算,利用乘法公式简化运算.让学生认识到,二次根式是一类特殊的实数,因此满足实数的运算律,关于整式运算的公式和方法也适用.

教材中虽然指明,如未特别说明,本章中所有的字母都表示正数,但仍应强调,看到根号就要注意被开方数的符号.可以根据二次根式的概念对字母的符号进行判断,在移出根号时正确处理符号问题.

4.巩固概念,学以致用。

练习:教科书第7页练习第1题.第10页习题第1题.

设计意图巩固性练习,同时检验乘法法则的掌握情况.

5.归纳小结,反思提高。

师生共同回顾本节课所学内容,并请学生回答以下问题:

(1)你能说明二次根式的乘法法则是如何得出的吗?

(2)你能说明乘法法则逆用的意义吗?

(3)化简二次根式的基本步骤是怎样?一般对最后结果有何要求?

6.布置作业:教科书第7页第2、3题.习题第1,6题.

五、目标检测设计。

1.下列各式中,一定能成立的是()。

设计意图考查二次根式的概念和性质,这是进行二次根式的乘法运算的基础.

2.化简二次根式的乘除______________________________。

设计意图二次根式是特殊的实数,实数的相关运算法则也适用于二次根式.

3.已知二次根式的乘除,化简二次根式二次根式的乘除的结果是()。

a.二次根式的乘除b.二次根式的乘除c.二次根式的乘除d.二次根式的乘除。

设计意图巩固二次根式的性质,利用积的算术平方根的性质正确化简二次根式.

二次根式示例【第五篇】

(3)了解代数式的概念.。

(2)学生能灵活运用二次根式的性质进行二次根式的化简;

(3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.。

二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.

本节课的教学难点为:二次根式性质的灵活运用.

1.探究性质1。

问题1你能解释下列式子的含义吗?

师生活动:教师引导学生说出每一个式子的含义.。

二次根式示例【第六篇】

难点:把被开方数是多项式和分式的二次根式化为最简二次根式.

请说出第(3),(4)题的解题过程.

答:第(3)题的被开方数是一个多项式,先把它分解因式,再运用积的算术平方根的性质,把根号中的平方式及平方数开出来,运算结果应化为最简二次根式.

理化.

请说出各题的特点和解题思路.

答:(1)题的被开方数及(2)题的被开方数的分子是多项式,应化成因式积的形式,可以先分解因式,再化简.

(3)题的被开方数的分母是两个数的平方差,先利用平方差公式把它化为乘积形式,再根据商的算术平方根和积的算术平方根的性质及分母有理化的方法,使运算结果为最简二次根式.

计算:

依据二次根式的乘除法的法则进行计算,最后要把计算结果化成最简二次根式.

1.选择题:

(7)下列化简中,正确的是[]。

(8)下列化简中,错误的是[]。

3.计算:

答案:

1.把一个式子化为最简二次根式时,如果被开方数是多项式,应把它化成积的形式,一般可考虑先分解因式,然后再化简.

2.如果一个式子的被开方数的分母是一个多项式,而这个多项式又不能分解因式(如课堂练习2(2)),在分母有理化时,把分子分母同乘以这个多项式.

3.二次根式的乘除法运算,运算结果一定要化为最简二次根式.

2.计算:

答案:

最简二次根式教学分二课时进行.教学设计中首先安排讨论二次根式的被开方数是单项式以及被开方数的分母是单项式的情况,然后再讨论被开方数是多项式和分母是多项式的情况.通过5个例题及课堂练习,最后达到使学生比较深刻地理解最简二次根式的概念,达到熟练地掌握把二次根式化为最简二次根式的教学目标 .

二次根式示例【第七篇】

新教材打破了旧教材从定义出发,由理论到理论,按部就班的旧格局,创造出从实践到理论再回到实践,由浅入深,符合认知结构的新模式。本节首先通过四个实际问题引出二次根式的概念,给出二次根式的意义。然后让学生通过二次根式的意义和算术平方根的意义找出二次根式的三个性质。本节通过学生所熟悉的实际问题建立二次根式的概念,使学生在经历将现实问题符号化的过程中,进一步体会二次根式的重要作用,发展学生的应用意识。

1.知道什么是二次根式,并会用二次根式的意义解题;

2.熟记二次根式的性质,并能灵活应用;

通过二次根式的概念和性质的学习,培养逻辑思维能力;

1.经历将现实问题符号化的过程,发展应用的意识;

2.通过二次根式性质的介绍渗透对称性、规律性的数学美。

重点:(1)二次根式的意义;(2)二次根式中字母的取值范围;

难点:确定二次根式中字母的取值范围。

启发式、讲练结合

多媒体

1课时

二次根式示例【第八篇】

(2)会进行简单的二次根式的除法运算;。

本节内容主要是在做二次根式的`除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行。二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算。教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向。

重点:二次根式的乘法法则与积的算术平方根的性质.。

难点:二次根式的除法法则与商的算术平方根的性质之间的关系和应用。

4。1第一学时。

问题1二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?

师生活动学生回答。

设计意图让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.。

2.观察思考,理解法则。

问题2教材第8页“探究”栏目,计算结果如何?有何规律?

师生活动学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:。

问题3对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?

师生活动学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了。

设计意图学生通过自主探究,采用类比的方法,得出二次根式的除法法则后,要明确字母的取值范围,以免在处理更为复杂的二次根式的运算时出现错误。

问题4对例题的运算你有什么看法?是如何进行的?

师生活动学生利用法则直接运算,一般根号下不含分母和开得尽方的因数。

设计意图让学生初步利用二次根式的性质、乘除法法则进行简单的运算。

问题5对比积的算术平方根的性质,商的算术平方根有没有类似性质?

师生活动学生类比地发现,商的算术平方根等于算术平方根的商,即。利用该性质可以进行二次根式的化简。

问题2教材第8页“探究”栏目,计算结果如何?有何规律?

师生活动学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:。

问题3对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?

师生活动学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了。

设计意图学生通过自主探究,采用类比的方法,得出二次根式的除法法则后,要明确字母的取值范围,以免在处理更为复杂的二次根式的运算时出现错误。

问题4对例题的运算你有什么看法?是如何进行的?

师生活动学生利用法则直接运算,一般根号下不含分母和开得尽方的因数。

设计意图让学生初步利用二次根式的性质、乘除法法则进行简单的运算。

问题5对比积的算术平方根的性质,商的算术平方根有没有类似性质?

师生活动学生类比地发现,商的算术平方根等于算术平方根的商,即。利用该性质可以进行二次根式的化简。

例1计算:(1);(2);(3)。

师生活动提问:你有几种方法去掉分母中的根号?去分母的依据分别是什么?

设计意图通过具体问题,让学生在实际运算中培养运算能力,训练运算技能,

问题5你能从例题的解答过程中,总结一下二次根式的运算结果有什么特征吗?

师生活动学生总结,师生共同补充、完善。要总结出:

(1)这些根式的被开方数都不含分母;

(2)被开方数中不含能开得尽方的因数或因式;

(3)分母中不含根号;

设计意图引导学生及时总结,提出最简二次根式的概念,要强调,在二次根式的运算中,一般要把最后结果化为最简二次根式。

问题6课件展示一组二次根式的计算、化简题。

设计意图让学生用总结出的结论进行二次根式的运算。

例2教材第9页例7。

再提问章引言中的问题现在能解决了吗?

设计意图巩固性练习,同时培养学生应用二次根式的乘除运算法则解决实际问题的能力。

1.在、、中,最简二次根式为。

设计意图考查对最简二次根式的概念的理解。

2.化简下列各式为最简二次根式:;。

设计意图复习二次根式的运算法则和运算性质。鼓励学生用不同方法进行计算。对于分母含二次根式的处理,要结合整式的乘法公式进行计算。

3.化简:(1);(2)。

设计意图综合运用二次根式的概念、性质和运算法则进行二次根式的运算。

教科书第10页练习第1,2,3题;

教科书习题16。2第10,11题。

相关推荐

热门文档

48 1949555