学生对两位数除以一位数的教学反思热选【参考10篇】
【请您参阅】下面供您参考的“学生对两位数除以一位数的教学反思热选【参考10篇】”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!
学生对两位数除以一位数的教学反思【第一篇】
本节课教学中,我通过仔细分析教材里不同计算方法的呈现特点,结合学生的实际,采取相应的教学策略,提高计算教学的效率。
教材通常在学生已初步具备解决某个计算问题的知识和经验,但独立探索新的计算方法难度较大时,可以先让学生探索,再老师示范、解释算法。在教学一位数除三位数的竖式计算方法时,考虑到学生已经掌握了一位数除三位数的竖式计算的方法、有余数除法的竖式计算以及一位数除整十数商是整十数的口算,教材在提出计算2386之后,先让学生估算,再让学生尝试计算,试算完毕,开展争当小老师的活动。在争当小老师的活动中,四人小组的成员自找同伴,互教互听。通过观察、讨论、发现每一题的`笔算过程先做什么——再做什么——接着做什么——最后做什么,探索出笔算除法的运算程序。教学时,我充分利用教材提供的现实情境,努力激活学生已有的知识和经验,鼓励学生用自己的方法计算。同时,启发学生通过同桌的合作与交流,互相启发,打开思路,并通过计算方法的展示和介绍,让学生感受不同计算方法的内在联系,体会到计算2386的基本策略。
学生对两位数除以一位数的教学反思【第二篇】
两位数乘一位数的口算,进位的与不进位的口算方法相同。学生在掌握了两位数乘一位数不进位的口算方法后,应用这一已有知识探索出进位的口算方法对学生而言已不再是难事。我认为在新课的展开时,应注重的是学生的思维过程,因此,我鼓励学生自己去探索口算的'方法。在学生探究过程中,一些学生已经能用在脑子中列竖式的方法来口算,一些学生能用前一节所学的方法即两位数乘一位数口算时,可把两位数分成几个十和几个一,然后分别乘一位数,再把乘得的积加起来。应该说,除个别学生外,其他学生都掌握了方法并能正确地进行口算。但是在课堂上,我没有反思这些学生为什么会错,一些学生当然是因为粗心做错,而有些学生对于算理还是有些模糊。在全班反馈中我没有抓住学生的错误进一步反问其为什么会出现这样的错误,而只是一味地让别的同学来帮助他正确解决。然后在课后单独辅导过程中也没有进一步询问其错误的原因。
我看到过这样一段文字:记得有个社会心理学家曾指出:“我们甚至‘期望’学生犯错误”,“因为从错误中吸取教训,便可争取明天的成功”。学生探索新知的过程往往不是笔直的,会产生这样或那样的错误。如果把学生的错误“隐藏”起来使教学显得一帆风顺、严丝合缝,这样的课未必是好课。“剥夺学生犯错的权力就等于限制他们自由选择的意愿”。所以,数学教学在让学生体验成功的同时,还要给学生尝试错误的权利,让学生在尝试错误的过程中锤炼自我,培养他们敢于克服困难的坚毅性格,进而形成良好的学习品格。
所以,我想,在让学生掌握正确的方法的同时,要让他们充分认识到原有的错误为什么是错的,要让学生学会观察,学会分析,让学生自己去评价、分析错误使全班学生都能关注这种错误,从而真正理解算理。
学生对两位数除以一位数的教学反思【第三篇】
新教材中,教材例题的编写非常精简,有些知识点的跨越很大,教学“一位数除三位数”时,教材只呈现一个例题(一位数除三位数商是两位数),“一位数除三位数商是三位数”只在做一做中出现。而这部分知识难点较多:除法竖式的书写格式,试商,正确判断并计算“商是两位数或三位数”这两种类型的题目。这些都是学生难以理解和掌握的。因此,在例题教学前,我加入了商是三位数的题目,除了可以加深对笔算除法算理的理解外,还可以与商是两位数的除法形成有力的对比。
虽然,通过复习铺垫、自主探究、交流反馈、对比发现,学生对一位数除三位数笔算除法的算理已经清晰明了,但仅此,学生要想正确计算,还需要在大量的练习中熟练把握,而那些学习处于中、下等水平的学生,学起来仍很吃力。尤其是商是三位数的情况,学生往往会同时移动两位来计算,造成了计算上的.错误。但全班整体掌握较好。
从这节课的教学中,我深刻感受到:在教学时,一定要先熟悉教材,吃透教材,挖掘所有知识点,把握编者意图,并根据班级实际选择合适的教学方法,才能造就一节高效的课堂。
学生对两位数除以一位数的教学反思【第四篇】
您现在正在阅读的二年级下册数学文章内容由收集!本站将为您提供更多的精品教学资源!二年级下册数学本课教学的是几十乘一位数的口算和不进位的两位数乘一位数笔算。在学习本课之前,学生初步认识了乘法的意义,掌握了乘法口诀,能口算表内乘法,能用竖式计算一位数乘一位数。
教材提供了两个例题,例1中3头大象运木材,每头运20根,用图画呈现的实际问题能很清楚地显示出求3头大象一共运了多少根就是求3个20是多少,并引起学生对乘法的回忆。在列出算式203以后,形象直观的问题情境又能让每名学生都有自己的算法,或是把3个20连加得到60,或是从6堆直观判断一共运了60根,也会有学生通过2个十乘3得6个十来计算,或从23=6类推出203=60。教材预计绝大多数学生都能很快说出一共运了60根,但会有相当多的学生并不清楚自己是怎样算的。所以,组织学生交流算法,一方面使学生仔细地想一想自己的算法,另一方面使全体学生都能理解后两种算法。因为后两种思考对继续学习笔算两位数乘一位数的影响很大。
解决3头大象一共运了多少根,估计学生能列出320或203这样的乘法算式,得出3个20,可以用乘法计算。
师:203等于60,怎么算呢?(引导学生说出各自的口算方法。)。
生1:23=6,203=60。
生2:可能会用数的方法:10、20、30、40、50、60,或20、40、60这样直接数。
生3:20+20+20=60。
生4:106=60。
重点关注第一种算法,师:23=6,为什么203=60呢?
师:这里的2表示什么?(2个十)。
师:2个十乘3得?(6个十)。
师:6个十就是?所以只要在6后面加个0。
指名说,全班说:2个十乘3得6个十,就是60。
看着算式说说数量关系:每头大象运20根木头,乘3头大象,等于3头大象一共运了60根木头。
师:那,照这样算,8头大象一共运了多少根呢?(打开书,做试一试)。
学生从多种算法中选用比较好的方法需要一个过程。试一试208的积超过100,如果仍然进行同数连加或从一共几堆想一共几根会很麻烦,如果想2个十乘8或从28=16类推就很方便,这是教材为学生主动优化算法创造的一次机会。第71页想想做做第1题设计了三组口算题,每组的上面一题是表内乘法,下面一题是相应的几十乘一位数。比较同组两题间的联系,从上面一题类推出下面一题的得数,是教材又一次引导学生优化自己的算法。
您现在正在阅读的二年级下册数学文章内容由收集!本站将为您提供更多的精品教学资源!二年级下册数学一位数乘两位数竖式计算的教学也充分利用直观情境图启发学生思考,第70页例题特意把两只猴各有的14个桃分装在两个篮子里,其中一篮放10个,另一篮放4个,而且2个放10个桃的篮子上下对齐,放4个桃的篮子也同样摆放。这样,学生很容易看出两只猴一共有多少个桃,也容易理出自己的思路。例题分三步教学:第一步是看图说得数、理思路。要舍得花时间让学生整理、表达自己的思考:先算2个10是20,再算2个4是8,然后把20和8合起来是28。教材重视整理、交流思路,为继续教学竖式计算做准备。第二步是建立竖式的模型。把思考的步骤与过程用竖式的形式呈现。这样,学生不仅学到了笔算方法,而且经历了建立数学模型的过程,不是机械地接受竖式,而是有意义地建构。教师在这里的任务不是展示和讲解竖式,而是和学生共同建构竖式,明晰竖式中每一步的计算内容。第三步是简化、优化竖式,教学竖式的一般写法。这是在学生理解竖式的结构、计算步骤的基础上进行的,在先算4乘2得8以后,再把10乘2得20的2写在十位上,既表示它是20,又同时完成了20加8得28这步计算,使竖式计算既快又方便。不能让学生误解为这又是一种竖式,要充分体会是已有模型的进一步简化、优化。
师:你从图中知道了什么数学信息?(每只小猴都采了14个桃。)。
师:2只猴一共采了多少个桃?乘法算式怎样列?
生:142或214。(板书)。
师:142谁会算?学生交流口算方法。
生1:14+14=28。
生2:10乘2等于20,4乘2等于8,20加8等于28。
生3:数出来的,右边一共是8个,左边一共是20个,合起来是28个。
教师重点引导第2种方法:2乘4,算的是哪边的桃子?
2乘10,算的是那边的?然后把20和8加起来。
师:这种口算方法,还能写成竖式。
师板书:142,2对齐谁?为什么?接下来先算2乘4得八(8对齐哪一位?),2乘10等于20(2对齐哪一位?),然后把它们加起来等于28。
师:这样的竖式有点麻烦,还可以写的更简便。
齐说计算过程:142先算2乘4得八,8对齐个位,再算2乘10等于20,2对齐十位,合起来是28。
第71页试一试让学生计算321,这是他们第一次独立进行两位数乘一位数的笔算。在写竖式的时候,把两位数写在上面,一位数写在下面,就能应用例题里习得的算理和算法。教材还告诉学生用再乘一遍的方法进行验算。这是因为学生尚未认识乘法交换律,也不会计算321这样的竖式。让学生再乘一遍,再次体会乘的过程,初步学会竖式的写法、乘的顺序以及积的定位。
学生对两位数除以一位数的教学反思【第五篇】
这部分知识学生掌握得很好,想出了很多口算方法。比如96÷8,大部分学生用的是心里想竖式的方法,这与前面的学习有关。也有的学生是利用数的组成:想9个十除以8得1个十,余1个十,1个十加6得16,16除以8得2,10加2得12;有的学生用的是80÷8=10,96-80=16,16÷8=2,10+2=12,我把它称为“拆数法”(自己编的)。通过探索和交流,学生们不断完善了自己的.想法,掌握了一般的口算方法。
为了更好地让学生熟悉“拆数法”,在应用环节,我重点引导学生交流如何用“拆数法”进行口算。有的同学对如何拆数存在困惑,比如96÷8,为什么要拆成80和16,而不拆成90和6,大家最后发现除数是几就拆成几十,这种方法比较简便。
练习中学生们对自主练习第5题存在争议。家政公司为王阿姨推荐了两份工作:a工作5小时70元;b工作7小时91元;有的学生用每小时的收入进行选择a,有的学生根据总收入进行选择b,两种方法我都给予了肯定。通过教学我感到今后应引导学生更多地参加实际活动,用数学知识解决问题,增强学生的应用意识,提高解决实际问题的能力。
文档为doc格式。
-->
学生对两位数除以一位数的教学反思【第六篇】
这两个星期以来,三年级的数学是学习三位数除以一位数的笔算除法。刚开始学习这个知识点时,有好多学生无从下手,懵懂懂的,不理解笔算除法为什么要出现那么长的竖式?结果作业的效果很不理想。
于是,接着的教学内容,我想办法把文本的例题进行修改,让学生更容易接受。在教学例3时(238÷6),感觉内容跨度太大。直接由如果直接进行教学,学生肯定难以理解和接受。
因此,和王银美老师商量后,决定在教学例题3之前先后补充这样一个题目:738÷6这样,先让学生掌握三位数除一位数且全部能整除的情况,然后再解决最高位不够除数除的情况。在教学738÷6时,虽然大部分的学生都能准确计算出结果,但在书写时有的学生却因数位没有对齐导致出错。经过结合两位数除一位数时的理解,与学生一起分析掌握好正确的格式后,再接触238÷6这样的题型,由易到难,由浅入深,符合了学生认知的规律。
随后,我又通过几道练习题进一步巩固三位数除以一位数但不带余数的除法。我先由复习导入,然后通过学生在两位数除以一位数的基础上进行知识迁移,探究出三位数除以一位数的笔算方法,但是学生在计算时我发现有的学生在百位上除完后把百位和十位上的数一起落下不会除而束手无策,还有的学生数位没有对齐,我想这些原因都是学生在学习被除数是两位数的时候计算不太熟练。
这部分知识在学生理解算理的基础上加强训练,使之逐步消化,才能达到熟练,再加上要注意加强试商练习,实行人人过关术,使学生都能准确、快速地试商,真正掌握除数是一位数的笔算除法。
学生对两位数除以一位数的教学反思【第七篇】
教学内容:北师大版数学实验教材三年级上册第一单元第四节课《植树》。
一、教学目标。
1、探索并掌握一位树除两位数的口算方法,并能正确计算,提倡算法的多样化。
2、用除法知识解决简单的实际问题,感受数学在实际生活中的运用。
二、教材分析这是学生在掌握一位数除整十、整百、整千的口算方的基。
础上,继续学习一位数除两位数的口算方法,教材创设“植树”的教学情境,引导学生在活动中探索并掌握一位数除两位数的口算方法。
与过去教材相比,新教材体现了学生的主体地位,真正做到了以人为本,以学生的生活经验为基础,在活动中探索新知,关注学生的个体差异,准许学生用喜欢或容易接受的方法进行计算,使不同的学生在数学上有不同的发展。提倡算法的多样化。
三、学生状况分析。
三年级的学生非常喜爱新教材的情景式教学形式,喜欢体验各种活动,不仅可以动手操作也可以和全体同学交流自己的想法和创意,使学生很有成就感,乐于探索,积极求知。能够用喜欢的方法学习和计算。
三、教学设计。
(一)创设情境。
1、谈话:同学们,你们哪位同学植过树?谁知道植树需要哪几个步骤?笑笑他们班正在植树,我们到现场去看看,检验一下你们说的对不对。
(设计意图:通过谈话引起学生兴趣,吸引学生的注意。)。
2、出示主题图。
观察图后和同桌说说你看到了什么。(明确全班一共有多少人?一组有几人?)引导学生提出问题“每组三人,可以分多少组?”
(设计意图:结合具体情境,培养学生提出问题和解决问题的意识和能力。让学生自己观察,从情境中找出有效的信息,培养学生的观察能力和分析能力。)。
(二)探索新知。
1、学生独立列出算式并解答,小组交流。
学生列出算式36÷3,并尝试计算。让学生在小组内说一说自己列出算式的含义,把各自的算法交流一下。
(设计意图:让学生独立思考,探索一位数除两位数的计算方法,小组交流讨论,体验不同的算法,感受合作的快乐。)。
2、全班交流小组选代表发言,得出36÷3=12中的36表示一共有36人,3表示每组有三人,12表示可以分12组。学生得出计算方法:
1、因为12×3=36,所以36÷3=12。
2、30÷3=10,6÷3=2,10+2=12。
3、因为12+12+12=36,所以36÷3=12……。
对于学生的计算方法,只要正确,教师都要进行表扬和鼓励,准许学生用自己喜欢的方法计算。
(设计意图:全班交流体会算法的多样化,使学生可以选择合适的方法计算,感受集体的智慧。)。
4、拓展练习1:
60÷340÷280÷4。
66÷346÷284÷4。
69÷348÷288÷4。
学生独立计算,反馈计算结果。
师:这些算式有哪些规律,说说你有哪些发现。
只要学生说的合理都要给予肯定。
(设计意图:培养学生的观察能力和发现数学规律的能力,让学生用语言进行表述,培养学生的语言表达能力。)。
拓展练习2:
教材10页第2题:观察图和同桌说说你看到了什么?(明确题意)。
学生独立完成后全班交流。
学生代表,学生列出算式48÷4=12并说说计算过程。
(设计意图:培养学生独立观察能力,分析能力和解决问题的能力,全班交流为了培养学生的语言表达能力。)。
五、教学反思。
在具体情境中,引导学生提出问题、解决问题。在解决问题过程中,让学生体验探索一位数除两位数的口算方法,学生通过独立观察,独立思考,小组交流讨论,体验算法多样化,经历与他人交流的过程,培养学生的观察能力、分析能力、语言表达能力和与他人合作的意识。在交流过程中让学生感受集体的智慧是无穷的,懂得欣赏别人,能够取长补短。
学生在解决“可以分多少组”这个问题时,如果让学生用小棒动手摆一摆,可以把抽象的问题形象化,从而更好的理解除法的意义,在下节课时我会加强这方面的训练,让学生更好的感受数学、用数学。
学生对两位数除以一位数的教学反思【第八篇】
一位数除两位数的笔算除法是在口算除法和除法算式的基础上进行教学的。通过本节课的学习,让学生初步掌握一位数除两位数的算理、基本的运算思路和竖式写法。
在教学例1时,通过课件42根小棒平均分给2个人,每人分到几根?让学生想着分一分并用口算说一说怎么算,然后通过课件演示:先分整捆的每人2捆,再每人1根,让学生用口算说出分的过程;40÷2=202÷2=120+1=21。接着让学生尝试用摆竖式解决42÷2,因为例1被除数的各个数位上的数都能被整除,主要解决除的顺序和竖式写法的问题,可先让学生尝试,再讨论解决。在课上,我把学生尝试的竖式写在黑板上,让学生讨论有没有问题,在分析讨论中解决例1。例2也是一位数除两位数,但除到被除数十位上有余数。同样设计了42根小棒平均分给3个人,每人分到几根?课件主要解决平均分完3捆还剩1捆,怎么分?通过把1捆打开成10根和2根合起来再分,每人分到4根;然后让学生摆竖式。将小棒演示的每一步与的`竖式的每一步结合起来,既能够帮助思维弱的学生理解算理,对已经理解算理的学生也是一种认知的强化。
学生对两位数除以一位数的教学反思【第九篇】
这部分知识学生掌握得很好,想出了很多口算方法。比如96÷8,大部分学生用的是心里想竖式的方法,这与前面的学习有关。也有的学生是利用数的组成:想9个十除以8得1个十,余1个十,1个十加6得16,16除以8得2,10加2得12;有的`学生用的是80÷8=10,96-80=16,16÷8=2,10+2=12,我把它称为“拆数法”(自己编的)。通过探索和交流,学生们不断完善了自己的想法,掌握了一般的口算方法。
为了更好地让学生熟悉“拆数法”,在应用环节,我重点引导学生交流如何用“拆数法”进行口算。有的同学对如何拆数存在困惑,比如96÷8,为什么要拆成80和16,而不拆成90和6,大家最后发现除数是几就拆成几十,这种方法比较简便。
练习中学生们对自主练习第5题存在争议。家政公司为王阿姨推荐了两份工作:a工作5小时70元;b工作7小时91元;有的学生用每小时的收入进行选择a,有的学生根据总收入进行选择b,两种方法我都给予了肯定。通过教学我感到今后应引导学生更多地参加实际活动,用数学知识解决问题,增强学生的应用意识,提高解决实际问题的能力。
学生对两位数除以一位数的教学反思【第十篇】
今天开学第一天,而第一天就被随堂听课,运气真是很好,幸好昨天做了认真的准备,所以不算很慌张,但是课上出现了很多我没有预设到的问题,上着上着我却是越来越慌张,最后除数被除数都不分了。
三位数除以一位数的除法由于有两位数除以一位数的基础,所以我觉得应该不会很难,所以在例题986除以2的竖式计算那里,黑板上提示到百位上商4,就放手让学生自己探索下面的算法了,但是三位数的被除数让学生无从下手,本该是一位一位往下挪的数字,有的孩子一起挪到下面来,或者是百位上有余数却没有移下来,有的数位也没有对齐就乱移一通,我自己在解释的时候也乱,后来想清楚了,觉得自己挺悲剧的。
首先,大部分学生都知道除法应从最高位除起,这个地方点到为止。
然后弄清百位上的被除数是几,百位上有没有余数,余到十位上加上十位上的数字共同成为十位上的被除数,接着除,再看十位上有没有余数,余到个位上加上个位上的数字共同成为另一个被除数,接着除,个位上还有与余数的就余下来作为商的余数,这样讲条理会清楚一些,学生接受起来,模仿起来也容易上手。
其次,对除法法则的渗透还要加强。我自己是在不知不觉中运用了除法法则,但是没有明确的说出来,造成了人为的障碍。最典型的错误就是余数会比除数大,光看算式很容易发现余数不应该比除数大,但是在计算的过程中就经常出现,问题大多出在试商的环节,口诀不熟,慢,一慢一不熟就容易让思维停滞,一旦停滞就不能考虑周到,往往乘法好不容易嘀咕出来是多少了,写出来一减余数还老大的,所以下面要练习学生的试商,简单点就直接练习乘法的口诀。
这节课我是想有一个尝试的,就是以最简答的小组合作的形式——同桌合作,来完成练习部分的锻炼。因为两个人能形成最简单的合作,并且两个人的合作有多人合作没有的优势,就是在两人合作中每个人都必须参与其中,每个人都是发言者和倾听者,每个人必须更专心的记录或发言,而合作意味着对话的开始,对话是思维的外衣,是两个人平等的展现自己的思想,哪怕是最浅显的,也给进一步的思考提供了自信的源泉。前面两人合作口算问题不大,后面的笔算出现了各种各样的问题,打乱了我的教学预设,很多该小组完成的作业被延误了。
所以,计算教学需要思考的还很多,现在我越来越觉得教的过程可以不完美可以琐碎,但要条理清楚,要让人容易上手,上完学生都会做作业那就是最实在的奖励。