实用式与方程教案设计意图 曲线和方程的数学教案设计实用(优推8篇)
式与方程教案设计意图【第一篇】
执教人:上海市兴陇中学李炯。
教学目标:利用代数与几何图形相结合的思想列方程解应用题;并创设情景解决生活中的数学问题。
重点难点:知识的综合灵活应用。
情感目标:激发学生创新思维,培养学生解决问题的能力。
教学过程:
(一)复习:
(二)正课:
本节课我们将研究一下如何用列方程的思想方法解决与几何知识有关的应用题。
将本文的word文档下载到电脑,方便收藏和打印。
式与方程教案设计意图【第二篇】
本节课的重难点在于设未知数和找等量关系,通过这两道题的练习,为第三道题的变式练习做准备。
3.养殖场有白兔和黑兔,白兔的只数是黑兔的4倍。
(1)白兔和黑兔一共230只,白兔和黑兔各有多少只?
(2)白兔比黑兔多138只,白兔和黑兔各有多少只?
请同学们先独立完成第一问,然后我们进行交流。
第二问请大家认真思考,观察与第一问的区别,独立完成后,进行交流。
四、课堂小结。
通过本节课的学习:
式与方程教案设计意图【第三篇】
预设5:
解:设海洋面积为x亿平方千米。那么陆地面积可以表示为实际问题与方程教学设计亿平方千米。
地球表面积-海洋面积=陆地面积。
预设:第一种方法最好,解方程的过程最简单。
师:同学们你们简直太聪明了,想出来这么多解决这道题目的方法,不过我们要在这么多的方法之中选择最优的做法,一般遇到这类求两个未知量的题目,我们要设一倍量为x,再利用题目中的等量关系来解决问题。
师:接下来请同学们思考,列方程解决实际问题一般需要哪几个步骤呢?
(3)总结方法。
1、设(找出未知数,用字母x表示)。
2、找(找出题目中的等量关系)。
3、列(根据等量关系列出方程)。
4、解(运用等式的性质解方程)。
5、验(将解出的结果代入方程检验)。
6、答(完整地写好答话)。
三、巩固练习。
1、果园里苹果树和梨树一共300棵,梨树是苹果树的5倍,苹果树和梨树各有多少棵。下列说法正确的是()。
a、解:设梨树为x棵,则苹果树为5x棵。
b、解:设苹果树为x棵,则梨树为5x棵。
通过这道题目的练习,使学生更深一步掌握设两个未知量的方法。
2、找出下列各题中的等量关系。
式与方程教案设计意图【第四篇】
五年级第四单元教材的设计打破了传统的教学方法。在以前人教版教材中,学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等关系来求出方程中的未知数。而新教材则是借用天平游戏使学生首先感悟“等式”,知道“等式两边都加上或减去同一个数,等式仍然成立”这个规律,这样才能从真正意义上很好地揭示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。
在教学前,由于我个人比较偏好于传统的教学方法,总觉得用等式的性质解方程比较麻烦。为了转变自己的教学思想,更新教学观念,我深入了解新教材的涵意——方程是一个一个等式,是一个数学模型,是抽象的,而天平是一个具体的东西,利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。并能站在“学生是学习的主人”和“教师是学习的组织者、引导者与合作者”的这一角度上,为学生创设学习此课的情境,通过直观演示,充分给学生提供小组交流的机会。
在教学的整个过程中,重点突出了“等式”与“等式两边都加上或减去同一个数,等式仍然成立”这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。从而,我惊喜地发现孩子们的学习活动是那么的有滋有味,进而使我很顺利地就完成了本课的教学任务。
式与方程教案设计意图【第五篇】
教材的地位和作用。
“曲线和方程”这节教材揭示了几何中的形与代数中的数相统一的关系,为“作形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何这门课的基本思想,对全部解析几何教学有着深远的影响。学生只有透彻理解了曲线和方程的意义,才算是寻得了解析几何学习的入门之径。如果以为学生不真正领悟曲线和方程的关系,照样能求出方程、照样能计算某些难题,因而可以忽视这个基本概念的教学,这不能不说是一种“舍本逐题”的偏见,应该认识到这节“曲线和方程”的开头课是解析几何教学的“重头戏”!
根据以上分析,确立教学重点是:“曲线的方程”与“方程的曲线”的概念;难点是:怎样利用定义验证曲线是方程的曲线,方程是曲线的方程。
二、教学目标。
根据教学大纲的要求以及本教材的地位和作用,结合高二学生的认知特点确定教学目标如下:
知识目标:
1、了解曲线上的点与方程的解之间的一一对应关系;
2、初步领会“曲线的方程”与“方程的曲线”的概念;
3、学会根据已有的情景资料找规律,进而分析、判断、归纳结论;
4、强化“形”与“数”一致并相互转化的思想方法。
能力目标:
1、通过直线方程的引入,加强学生对方程的解和曲线上的点的一一对应关系的认识;
3、能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识。
情感目标:
1、通过概念的引入,让学生感受从特殊到一般的认知规律;
2、通过反例辨析和问题解决,培养合作交流、独立思考等良好的个性品质,以及勇于批判、敢于创新的科学精神。
三、重难点突破。
“曲线的方程”与“方程的曲线”的概念是本节的重点,这是由于本节课是由直观表象上升到抽象概念的过程,学生容易对定义中为什么要规定两个关系产生困惑,原因是不理解两者缺一都将扩大概念的外延。由于学生已经具备了用方程表示直线、抛物线等实际模型,积累了感性认识的基础,所以可用举反例的方法来解决困惑,通过反例揭示“两者缺一”与直觉的矛盾,从而又促使学生对概念表述的严密性进行探索,自然地得出定义。为了强化其认识,又决定用集合相等的概念来解释曲线和方程的对应关系,并以此为工具来分析实例,这将有助于学生的理解,有助于学生通其法,知其理。
怎样利用定义验证曲线是方程的曲线,方程是曲线的方程是本节的难点。因为学生在作业中容易犯想当然的错误,通常在由已知曲线建立方程的时候,不验证方程的解为坐标的点在曲线上,就断然得出所求的是曲线方程。这种现象在高考中也屡见不鲜。为了突破难点,本节课设计了三种层次的问题,幻灯片9是概念的直接运用,幻灯片10是概念的逆向运用,幻灯片11是证明曲线的.方程。通过这些例题让学生再一次体会“二者”缺一不可。
四、学情分析。
此前,学生已知,在建立了直角坐标系后平面内的点和有序实数对之间建立了一一对应关系,已有了用方程(有时以函数式的形式出现)表示曲线的感性认识(特别是二元一次方程表示直线),现在要进一步研究平面内的曲线和含有两个变数的方程之间的关系,是由直观表象上升到抽象概念的过程,对学生有相当大的难度。学生在学习时容易产生的问题是,不理解“曲线上的点的坐标都是方程的解”和“以这个方程的解为坐标的点都是曲线上的点”这两句话在揭示“曲线和方程”关系时各自所起的作用。本节课的教学目标也只能是初步领会,要求学生能答出曲线和方程间必须满足两个关系时才能称作“曲线的方程”和“方程的曲线”,两者缺一不可,并能借助实例指出两个关系的区别。
式与方程教案设计意图【第六篇】
教学内容:用字母代表未知数,列出符合题中条件的等式,解方程(例3,课本第159―160页,练习二十四)。
教学目的:通过复习使学生能教熟练地用字母代表未知数,列出符合题中条件的等式;列方程解应用题。从而培养学生抽象思维的能力和分析问题、解决问题的能力。
式与方程教案设计意图【第七篇】
学习目标:
1、进一步经历运用方程解决实际问题的过程。
2、提高学生找等量关系列方程的能力。
3、培养学生的抽象、概括、分析和解决问题的能力。
4、学会用数学的眼光去看待、分析现实生活中的情景。
重点:
1、如何从实际问题中寻找等量关系建立方程,解决问题后如何验证它的合理性。
2、解决打折销售中的有关利润、成本价、卖价之间的相关的现实问题。
难点:
如何从实际问题中寻找等量关系建立方程。
学习指导:
一、知识准备。
1、通过社会调查,亲历打折销售这一现实情境,了解打折销售中的成本价、卖价和利润之间的关系。进而能根据现实情境提出数学问题。
2、谈一谈:
请举例说明打折、利润、利润率、提价及削价的含义分别是什么?
3、算一算:
(1)原价100元的商品,打8折后价格为元;
(2)原价100元的商品,提价40%后的价格为元;
(3)进价100元的商品,以150元卖出,利润是元。
二、学习新课。
一)思考:
1、把下面的“折扣”数改写成百分数。九折八八折七五折。
2、你是怎样理解某种商品打“八折”出售的?
二)问题:
1、说说“打折销售”中自己有过的亲身经历。
2、假设你是一个商店老板,你的追求是什么?
3、你是怎样理解商品的利润?
三)新知探讨。
1、你认为商品的标价、折数与商品的卖价之间有怎样的关系?
2、结合实际,说说你从打折销售中可以获得哪些数学问题?
(1)某商店出售一种录音机,原价430元,现在打九折出售,比原价便宜多少钱?
(2)一种画册原价每本16元,现在按每本11。2元出售。这种画册按原价打了几折?
如果设每件服装的成本价为x元,根据题意,
(1)每件服装的标价为:()。
(2)每件服装的实际售价为:()。
(3)每件服装的利润为:()。
(4)列出方程,并解答:
四)回顾与反思。
式与方程教案设计意图【第八篇】
五年级第四单元教材的设计打破了传统的教学方法。在以前人教版教材中,学着解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等关系来求出方程中的未知数。而新教材则是借用天平游戏使学生首先感悟“等式”,知道“等式两边都加上或减去同一个数,等式仍然成立”这个规律,这样才能从真正意义上很好地揭示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。
在教学前,由于我个人比较偏好于传统的教学方法,总觉得用等式的性质解方程比较麻烦。为了转变自己的教学思想,更新教学观念,我深入了解新教材的涵意――方程是一个一个等式,是一个数学模型,是抽象的,而天平是一个具体的东西,利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。并能站在“学生是学着的主人”和“教师是学着的组织者、引导者与合作者”的这一角度上,为学生创设学着此课的情境,通过直观演示,充分给学生提供小组交流的机会。在教学的整个过程中,重点突出了“等式”与“等式两边都加上或减去同一个数,等式仍然成立”这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。从而,我惊喜地发现孩子们的学着活动是那么的有滋有味,进而使我很顺利地就完成了本课的教学任务。