初中数学小论文写作技巧实用(精彩8篇)
【请您参阅】下面供您参考的“初中数学小论文写作技巧实用(精彩8篇)”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!
初中数学小论文写作技巧【第一篇】
经常能够在学生口中听到这样的话――“那道题我会做的,可惜没有时间了。”“都怪我粗心,题目要选错误的,我选成正确的。”“这道题的图很明显就是要证这两个三角形全等,当时怎么就没看到。”诸如此类的失误丢分时常让老师和学生都觉得很可惜,而如果学生在平时就能养成较好的做题习惯,大部分情况还是可以避免的。
恰当的答题顺序常常能够事半功倍:通俗来说要培养学生先易后难的答题习惯,然而很多孩子常常难以在考试中严格执行。以深圳市数学中考为例,考查方式通常为12道选择题4道填空6道解答题。其中选择题最后两题,填空题最后一题,倒数第二题最后一问以及最后一大题有较大难度。学生在答题过程中,如果对于选择填空的难题部分遇到困难,可以考虑先猜想一个答案后先回答有把握的其他题目。如此可以有效的避免宝贵答题时间的浪费。
良好的心态是答题成功的前提。
对于很多初中阶段的孩子而言,数学的难不在于题目本身,更大程度上是一种畏难的心态。很多孩子一碰到题干部分略微偏长的题目,常常是题目还没有读完就已经“缴械投降”了。这一方面体现了学生读题能力的欠缺,另一方面更说明心态在某种程度上对学生有较重要的心理暗示。
由此,数学教师在教学过程中在注重提高孩子们数学学习兴趣的同时,更要注重孩子自信心的培养。让学生对于数学形成有良好的心理暗示――我觉得难的时候别人也会觉得难。同时,也要让学生对于自己的数学学习形成这样的一个概念――并不是做到满分才是成功,而是每一次对于自己能力范围内的题目都能做对就是一种成功,不懂的题目可以通过自己的努力下次完成。
初中数学小论文写作技巧【第二篇】
初中数学阅读理解题大致可分四类:纯文型(全部用文字展示条件和问题)、图文型(用文字和图形结合展示条件和问题)、表文型(用文字和表格结合展示条件和问题)、改错型(条件、问题、解题过程都已展示,但解题过程可能要改正)。无论哪种类型,其解题步骤一般都可分为以下几步:
在阅读时不仅要特别留心短文中的事件情景、具体数据、关键语句等细节,还要注意问题的提出方式。据此估计是我们平常练习时的哪种类型,会涉及到哪些知识,一般是如何解决的,在头脑中建立初步印象。
在阅读过程中不仅要注意各个关键数据,还要注意各数据的内在联系、标明单位,特别是一些特殊条件(如附加公式),以简明的方式列出各量的关系,提炼信息,读"薄"题目,同时还要能回到原题中去。
根据前面提炼的信息分析,通过文中关键词、句的提示作用,选用恰当的数学模型,例如由"大于、超过、不足……"等联想到建立不等式,由"恰好……,等于……"联想到建立方程,由"求哪种方案更经济……"联想到运用分类讨论方法解决问题,由"求出……和……的函数关系式或求最大值(最小值)"联想到建立函数关系,将题中的.各种已知量用数学符号准确地反映出其内在联系。
们的作用;二是关键词句的理解是否准确、到位;三是判断所列关系式是否符合生活经验;四是在解题过程中要善于反思,发现问题及时纠正。
在解题中需注意的几个问题:
1、克服缺乏仔细审题意识,避免因片面审题,快速答题带来的失误。
2、克服受思维定势的影响,用"想当然"代替现实的偏面意识。
3、忽略题中的关键词语、条件,对题意的理解有偏差。
4、善于回顾反思,及时发现问题纠正错误,克服侥幸意识带来不必要的失误。
5、平时要重视阅读、理解和表述能力的培养,加强数学语言的理解和应用,数学语言包括文字语言、符号语言、图形语言、数表,它是数学思维和数学交流的工具,所以要仔细梳理问题的脉络结构,培养良好的思维习惯。
初中数学小论文写作技巧【第三篇】
对于初中生来说中考就是一个重要的转折点,那么怎样才能在中考这场战役中取得胜利呢?别担心,看了中考数学答题技巧:中考数学填空题四大解题方法以后你会有很大的收获:
填空题是中考数学中的三种常考题型之一。填空题是一种只要求写出结果,不要求写出解答过程的客观性试题。因此我们不一定要知道每一步的推理,也不一定要用常规的解法,只要我们能找出答案就可以了。求解填空题的基本策略是要在准、巧、快上下功夫。常用的方法有直接法、特殊化法、数行结合法、等价转化法等。
这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。它是解填空题的最基本、最常用的方法。使用直接法解填空题,要善于通过现象看本质,熟练应用解方程和解不等式的方法,自觉地、有意识地采取灵活、简捷的解法。
当填空题的结论唯一或题设条件中提供的.信息暗示答案是一个定值时,而已知条件中含有某些不确定的量,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数,或特殊角,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出探求的结论。这样可大大地简化推理、论证的过程。
数缺形时少直观,形缺数时难入微。数学中大量数的问题后面都隐含着形的信息,图形的特征上也体现着数的关系。我们要将抽象、复杂的数量关系,通过形的形象、直观揭示出来,以达到形帮数的目的;同时我们又要运用数的规律、数值的计算,来寻找处理形的方法,来达到数促形的目的。对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。
通过化复杂为简单、化陌生为熟悉,将问题等价地转化成便于解决的问题,从而得出正确的结果。
解答填空题的基本策略是准确、迅速、整洁。准确是解答填空题的先决条件,填空题不设中间分,一步失误,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于填空题的答题时间,应该控制在不超过20分钟左右,速度越快越好,要避免超时失分现象的发生;整洁是保住得分的充分条件,只有把正确的答案整洁的书写在答题纸上才能保证阅卷教师正确的批改,在网上阅卷时整洁显得尤为重要。中考中的数学填空题一般是容易题或中档题,数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。
初中数学小论文写作技巧【第四篇】
数学是研究事物的空间形式和数量关系的,初中数学最重要的数量关系是等量关系,其次是不等量关系。从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。
最常见的等量关系就是方程,如运动过程中,路程、速度和时间三者之间就有一种等量关系。用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。这种思想在代数、几何及生活实际中有着广泛的应用。
在一个方程中,一般会有已知量,也有未知量,含有未知量的等式就是方程,而通过方程里的已知量求出未知量的过程就是解方程。
本题考查的是分式方程的应用,根据题意列出关于x的方程是解答此题的关键。
学生在小学就学过简易方程,进入初一后比较系统地学习一元一次方程,初二、初三还将学习解二元一次方程组、一元二次方程、简单的三角方程等等。到高中后,还会陆续学习指数方程、对数方程、线性方程组、参数方程、极坐标方程等。
解这些方程的思维几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解方程的五个步骤或者解一元二次方程的求根公式加以解决。
物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,我们一定要学好方程,为以后的数学学习打下良好基础。
方程的思想,是对于一个问题用方程解决的'应用,也是对方程概念本质的认识,是分析数学问题中变量间的等量关系,构建方程或方程组,或利用方程的性质去分析、转换、解决问题。要善用方程和方程组观点来观察处理问题。
方程思想是动中求静,研究运动中的等量关系。当一个问题可能与某个方程建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。例如证明柯西不等式的时候,就可以把柯西不等式转化成一个二次方程的判别式。
方程思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
今天的内容就介绍到这里了。
初中数学小论文写作技巧【第五篇】
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化。换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在初中数学中有广泛的应用。
初中数学小论文写作技巧【第六篇】
如何学好初中数学,是摆在初中学生面前的一个大问题。其实,学好数学并不难!初中学生要想学好数学要从课本、上课、作业三个方面掌握下面几招:
每堂新课之前,做到先预习,特别要把难点或不懂之处用彩笔划出,以便上课时更加注意。每节内容后面的练习自己可以先做一做,做到看懂70%的新内容,会做80%的练习题。每节新内容学完后,我们要按照课本内容,从易到难,从简到繁,一步一步地把学过的知识进行比较复习,对概念、定理、公式做出归纳、总结,加深对知识的理解,最好能把课本上的例题自己做一遍。对课本上的概念、定理、公式推理一遍,以形成对知识的整体认识。
把预习中存在的问题放在课堂上着重听,必要时还需做好笔记,并通过一些练习题加以巩固。数学不同于其他学科,单把概念、定理、公式背熟,无法解决实际问题,只有通过练来减少运算中出现的错误。对于曾经出错,容易出错或者混淆的问题可以建立相应考点笔记本,以便于复习。这样“三位一体”把握好知识的.产生、内化、应用。
作业一定要养成独立思考的习惯,多从不同的方法、角度入手,多从典型题目中探索多种解题方法,从中得到联想和启发。同时,还应多树立数学解题思想,如:方程的思想、函数的思想、数形结合的思想等常用方法;对于难题,要多问几个为什么,如改变条件、添加条件、结论与条件互换,原结论还成立吗?对于数学规律,应当搞清它们的来源,分清它们的条件和结论,弄清抽象、概括或证明的过程,了解它们的用途和适用范围,以及应用时应注意的问题,对于基本技能的训练和能力的培养,要遵循认识规律,结合学习的内容,选择合适的学习方法,有目的、有计划、分阶段地进行。
另外,对于自己作业、试卷中出现的错误,最好能准备一本错题集,以便今后复习中使用。做到绝不出现第二次类似错误。
总之,学习数学要有方法、计划和合理的安排。新课授完后,大家要从知识的回顾,习题的练习和题目的整理入手做好新知识的内化。每个同学都应根据自己的实际情况制订出合理的学习方法、目标;没有方法,就会变成一只无头苍蝇;没有目标就会没有动力。
初中数学小论文写作技巧【第七篇】
由于在解题的过程中,可能会出现这样或那样的错误,因此在解完一道题后就很有必要进行审查自己的解题是否混淆了概念,是否忽视了隐含条件,是否特殊代替一般,是否忽视特例,逻辑上是否有问题,运算是否正确,题目本身是否有误等。这样做是为了保证解题无误,这是解题后最基本的要求,真正认实到解题后思考的重要性。
对于同一道题,从不同的角度去分析研究,可能会得到不同的启示,从而引出多种不同的解法,当然,我们的目的不在于去凑几种解法,而是通过不同的观察侧面,使我们的思维触角伸向不同的方向,不同层次,发展学生的能力。
有些题目本身可能很简单,但是它的结论或做完这道题目本身用到的性质却有广泛的应用,如果仅仅满足于解答题目的本身,而忽视对结论或性质应用的思考、探索,那就可能会“拣到一粒芝麻,丢掉一个西瓜“。一道题中本身必然包含了具体的数学知识和方法,你要通过这道题把本题所蕴涵的知识和方法提炼出来,总结归纳.像,研究的不外乎是定义域,值域,单调性,最值等.每做一个题就可以把这些东西一下,这样才能对的起你做的题.
改变题目的条件,会导出什么新结论;保留题目的条件结论能否进一步加强;条件作类似的变换,结论能扩大到一般等等。象这样富有创造性的全方位思考,常常是发现新知识、认识新知识的突破口。
解完一道题目后,不妨深思一下解题程序,有时会突然发现:这种解决问题的思维模式竟然体现了一训重要的数学思想方法,它对于解决一类问题大有帮助。这样,有利于深化对数学知识和方法的认识,真正领悟到数学的思想和知识的结构,促进其创造性的发展,从而充分发挥自己的智能和潜能。
初中数学小论文写作技巧【第八篇】
数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。
(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。
(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容,在高考的'数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴含了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。
(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力。思辨性的要求充满题目的字里行间。
(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。这个特色在高中数学中已经得到充分的显露。因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。
(5)解法多样化:以其他学科比较,“一题多解”的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。