首页 > 工作范文 > 范文大全 >

数学教学的重要性和方法样例【实用8篇】

网友发表时间 1674191

【请您参阅】下面供您参考的“数学教学的重要性和方法样例【实用8篇】”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!

数学教学的重要性和方法【第一篇】

新的高考形势下,高三数学怎么去教,学生怎么去学无论是教师还是学生都感到压力很大,针对这一问题备课组在学校和年级部的领导下,在姚老师和高老师以及笪老师的的具体指导下,制定了严密的教学计划,提出了优化课堂教学,强化集体备课,培养学生素质的具体要求.即优化课堂教学目标,规范教学程序,提高课堂效率,全面发展,培养学生的能力,为其自身的进一步发展打下良好的基础.在集体备课中我们几位数学老师团结协作,发挥集体力量.

高三数学备课组,在资料的征订,测试题的命题,改卷中发现的问题交流,学生学习数学的状态等方面上,既有分工又有合作,既有统一要求又有各班实际情况,既有“学生容易错误”地方的交流又有典型例子的讨论,既有课例的探讨又有信息的交流.在任何地方,任何时间都有我们探讨,争议,交流的声音.集体备课后,各位教师根据自己班级学生的具体情况进行自我调整和重新精心备课,这样,总体上,集体备课把握住了正确的方向和统一了教学进度,对于各位教师来讲,又能发挥自己的特长,因材施教.

数学教学的重要性和方法【第二篇】

数学以其卓越的智慧成就被人们尊称为“科学皇后”,是最富有理性的学问,并且它的应用价值正在被各行各业公认为有力的理论工具。任何一门自然科学,只有当它与数学工具结合进行研究时,才被视为发展趋于完善的科学。数学建模就是一门将数学知识应用于实践,推动人类文明和谐发展的学科。它是科学的伙伴,科学的仆人,是解决复杂事件、分析事物内在联系、给出定性定量结果的理论依据。

1、数学建模简介。

数学建模通俗讲就是利用数学知识建立模型并求解分析的过程。这个模型可以是公式、表格、图像等形式,它产生于现实,可以指导人们的生产生活,是社会发展的助推器,引领科技进步,它是数学学科发展的必然产物。著名美国数学家、哲学家、数理逻辑学家怀特黑德曾说:“只有将数学应用于社会科学的研究之后,才能使文明社会的发展成为可控制的现实。”数学模型就是数学建模的具体展现,它针对某一实际问题的具体要求,为达到某种特定目标,在操作时做出必要的简化假设,借助适当的数学理论模拟出的一个数学结构。它必须反映所述现象的基本真实情况、具有可行解或可行域,最好具有预测功能、拥有图像处理和数据模提取对象的最优决策或理论控制。

2、数学模型的发展历程及学习的必要性。

2、1数学模型的产生。

人类最早的记事方法———结绳法,所谓“上古无文字,结绳以记之”,从中可知古人都会用绳子打结的数量记录发生的事情。这种将实际事物做一种数学简化的方法就是最早的数学模型。在科技发达的今天,要描述一个实际现象有多种方式,比如视频功能、类比、描述、传言等等,在某种意义上能反映实际事物的本质属性。为使表述更具真实性、科学性、客观性和可重复性,人们采用逻辑性强、语言严谨的科学来描述各种现象,这就是数学。用数学语言呈现事物的方式就称为数学模型。

2、2数学模型的含义。

广义来讲,由正常的教学概念、数理体系、数学公式、各类初等或高等数学方程式构成的算法规则等都称为数学模型,简言之就是公式化的数学。狭义来讲,凡是将具体现象、事物特征和性质用数学表达的结构也称为数学模型,如图像、表格或思维框图等。我们构造数学模型以解决某个现实问题为目的出发,通过问题抽象归纳出来的数学问题称为数学模型。也可以认为数学模型就是用数学语言对现实问题进行科学严谨具体的描述。

2、3数学模型的作用。

数学模型产生于现实,就必须反映现实,即用数量关系表述实际问题。因为现实世界中能直接套用数学方法表示的事物是非常有限的,所以必须对现象做出一些必要的简化和假设,提取现实问题的主要相关因素,忽略一些次要的、与数据变化较小的因素,建立模型。数学模型反映客观事物内在关系,但不与事物现象完全吻合,是对现实问题的近似描述。

2、4数学模型的智能化体系。

高等数学为大数据、云计算、智能算法提供理论依据。如证券市场和银行理财等投资方面的专业定制,投资前分析诊断,投资中智能提醒,投资后跟踪检测为一体的智能投资顾问服务,建立多维定位,实现精准有效的投资源共享。它的专业数据分析功能既可比对过去,又可根据不同需求预测未来,精准有效全方位展现事物内部联系,保障实施的时效性和成功率。

2、5建立数学模型的过程。

用数学知识武装自己的头脑,通过分析,掌握要解决的各类实际问题的实质,抽象提取相关数学概念,从基础定义出发,构建求解框架,建立数学模型,它是整个建模过程的核心。建立数学模型,要对事物有所了解,查找收集资料,提取有用的正确的事物信息,抓住其本质的固有特征和规律,结合相应的假设方式和假设条件,将问题简化成合理的数据结构,从而建立反映该实际问题的数量关系。在求解时,最好能将问题公式化,找到内在数据关系和变化规律,如果数据海量,需借助数学软件。完整的模型还需要对求解的模型进行分析检验,给出合理的解释以及模型的推广应用。数学模型给人类生活带来利益,为社会生产提供便捷,是将数学与现实联结的纽带,在科技发展中体现着它的重要价值。

3、数学建模课程概况。

3、1课程的内容与基本要求。

数学建模课程内容涉及面较广,微积分、微分方程、线性代数、概率论与数理统计、线性非线性规划、网络图、数据分析与预测、常用数学软件操作等都属于必备数学分支。这些需要深厚扎实的数学知识作为基础,克服困难勇于攀登的坚定信念为思想支柱,结合敏锐的洞察力和想象力,以及对问题的浓厚兴趣和广博的知识面。

3、2、1基本任务。

通过实验使学生了解利用数学方法分析解决问题的全过程,理解数学的真正用途,帮助学生提高分析问题和解决问题的`能力,培养数学学习兴趣,锻炼多角度思维方式,增强数学知识渗透的意识与能力。在今后的工作中自觉地联系到用数学建模的方法解决遇到的问题,借助软件工具,站在现代高科技成果的制高点,将数学与计算机有机地结合起来开发新途径,创造新高度。数学建模课程教学要以学生为主,在教师的引导下,主动查阅文献资料、自觉学习新知识,互相探讨、积极辩论,在理解知识的碰撞中查出灵感的火花,营造积极的建模氛围。

3、2、2拓展任务。

数学建模课程教育不能只停留在数学和问题上,要放开眼界,培养学生善于学习、乐于思考的钻研能力和团队协作意识,塑造他们成为应用开发型人员的必备能力。教学的重点是培养兴趣,打开思路,勇于创新,提高学生整体的数学素质,它可以扩大获取新知识的能力范围,为解决问题铺平道路。创新能力体现思维的灵活性、完成任务的多途径性和不达目的不罢休的韧性。这些都是数学建模课程培养的良好品质。

3、3、1实验课程名称与类别。

实验名称的设定:每两课时设计一类高等数学知识点进行实验教学,如:matlab使用练习与建模初步、微积分的计算、数据图形可视化、工具箱的简单操作、微分方程的数值解问题、数据的统计描述与分析、优化建模等。实验类别分为演示型、操作型、验证型、综合型、设计型和研究创新型六大类。这也是学习数学建模软件的一般步骤,通过上机观察学习,掌握基本命令及使用规则,运用于求解模型,选择适当语句设计程序,修改程序。

3、3、2实验目的与要求。

实验目的设定:明确软件对所学内容的表达与相关计算,包括输出类型的显示。熟悉计算机程序求解数学问题的命令语句实验要求:熟练掌握每部分知识的利用软件计算、画图、分析比较、动静态模拟、演化、预测等。

3、4数学建模理论及实验课的考核方式。

合理的学生成绩评价体系可以真实有效地反映出学生对课程知识的掌握程度。常用的评价手段即通过笔试成绩和平时成绩按照某种比例来确定学生的最终成绩。为体现高等数学建模知识的实用性和开放性,建议采取理论课考核与实验课考核,即笔试与机试两大部分,开闭卷结合的考核方式更能广泛汲取思想方法拓宽学生用理论解决实际问题的路径。考核是教学过程中的重要环节,既承担检验教师教学效果的任务,也督促学生认真完成学习规划,具有双重效应,是一根无形却很有权威的指挥棒。

数学建模课程实现了教育现代化、紧跟时代步伐的愿望,对学生今后工作能力的培养是具有深远意义的。我们培养学生,不能只顾眼前,要着眼于未来,跟上科学技术发展的步伐。在大数据技术和多元化软件迅速发展的驱动下,数学的分析功能在自然科学领域与工程技术中的作用与日俱增,逐渐渗透到各科领域,体现着它的地位与价值。数学建模的科技力量正被人们广泛认可,对实际问题研究的精确化、定量化和数字化,使它成为解决实际问题的重要工具。我国著名数学家华罗庚教授在文章《大哉数学之为用》中指出:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学”。从宇宙到粒子,从工业生产到军工事业,再到繁衍生息,都与数学息息相关。数学具有科学性、应用性、精确性等特点,是其他学科少有的。在对许多重大问题的决策上,数学方法是具有强大说服力的,误差分析可以控制问题的精度,规划求解能锁定范围。

高等数学作为高职院校重要的理论基础课,对许多专业课程的学习起着不可估量的作用。它的思维方式、思维习惯、思维策略将帮助学生在面对问题时具有冷静的头脑,它的严谨性、简洁性可以将复杂问题科学合理地转化,他的最大作用是计算求值,把问题变得可执行可操作可求解。学以致用是高校培养人才的目标之一。数学建模是高等数学课程的分支和推广应用,为高校实施素质教育,培养努力探索、具有创新思维的智能型人才提供必要的技术支持。各高校通过开设数学建模课程,逐渐体会到它的灵活性、适应性、推广度在实践中的重要地位,也从学生的工作学习反馈中认可这门课程带来的无限利益。国内外许多大学已开设这门课程,并成立团队参加各级别的数学建模竞赛,体会它的应用价值,交流学术、拓展新思路。数学建模教学难度大,含金量高,是一个不断探索、不断创新、不断完善的过程。希望高职院校能克服困难早日开设数学建模课程,在人才培养理念上与本科院校同步。

4、3、1培养学生的个体能力。

高校开展数学建模课程是培养学生综合能力的一条有效途径,根据实际情况建立数学模型是一项创造性任务,构造合理的数学模型不仅需要数学知识,还需要有观察事物的洞察力,抽象的分析能力,提取实物内在联系,化繁为简将问题条理化,合理化;想象力也是必备条件之一,它是形象思维的演化,具有灵活性和自由性,是进行科学研究的抽象因素;具备应用数学工具的能的力,在对问题深度探究的过程中,会产生不同的观点,采用不同的数学方法建立模型,是从不同视角出发,分析解决问题的手段,是培养学生发散思维创新思维能力的体现,具有深层的教育意义。

4、3、2培养团队合作意识。

一般课程的学习和考核都是以学生个人为单位进行,高等数学建模课程则注重团队合作,这种方式在当今工作中比比皆是,每个善于经营的私企都可视为一个拥有较优分工合作能力的团体。在培训中,为学生能够充分体验合作分工的重要作用和意义,我们在分组时就会根据每个人的特点搭配分组,比如将善于思考、思维敏捷、勇于探索发现,心思细腻、考虑周到、语言表达能力强和熟悉办公软件及建模程序操作的学生组成小团体,每个人在团队中都有自己的任务,还需要相互协作、讨论,共同进步。让学生在完成数学建模的过程中树立全局意识及责任感,必将对他们今后走上工作岗位产生深远的影响。

4、3、3增强竞争能力。

人的潜能是被激发出来的,你永远也不可能知道一个人的能力究竟有多少。参加数学建模课程培训,会带你遨游数学太空,领略它别具一格的应用价值以及精准而又理性的说服力。在数学建模团队中,你会明白不进则退,你会习惯后浪推前浪,你会越挫越勇。

4、4数学模型的广泛应用。

4、4、1近年来数学建模解决的实际问题及方法举。

随着经济的发展,社会的进步,各行各业的人类都将面临越来越多的新问题需要解决。如搜救路线的设计和人员排班问题的拟定;公交车路线和站点的设计和发车时间间隔这类问题,可借助旅行商问题的延伸m———tsp最短路径法给定方案,或可从运筹学中的对偶问题求解方法、0-1模型以及lingo线性规划问题求解方法,对问题进行合理规划,建立模型,在具体的解题过程中根据实际情况分析,增加必要的限制条件,使结论的可操作性更逼近实际。这里采用两种解题方法,运筹学与lingo的解题方法,以便最终达到较为完善的方案。求出符合题目要求的解答,经过结果分析与验证,所得结果完全正确。

4、4、2评价分析法的应用。

高等数学的评价模型还可以对具有某一资质的团体做出的评判进行分析。如全国竞赛a题:葡萄酒的评价就是通过评酒员对葡萄酒质量进行品评的打分数据,评价出可信度高的小组并确定葡萄酒的质量;说明葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

根据所给某年份一些葡萄酒的评价结果,利用高等数学单因素方差分析和多因素方差分析,一致性程度,采用评价指标f,综合评价法则可分析数据中两组评酒员的评价结果有无显著性差异以及结果的可信度。成为高等数学的盟友,利用数学知识建立模型解决问题会使你受益终身,会为你扫清障碍,为你的判断提供科学依据,助你登上科学的巅峰。

参考文献:。

[1]贺利敏.工程数学[m].北京:北京出版社,.。

[2]曹旭东.数学建模原理与方法[m].北京:高等教育出版社,.。

[3]张桦.探析数学建模教育对人才的培养[j].教育与职业,(2).。

作者:宋晓婷单位:山西建筑职业技术学院。

数学教学的重要性和方法【第三篇】

[论文摘要]数学建模对现代教育教学提出新的要求,使得数学更具有人才培养的功能。本文从数学建模的内涵、人才培养等方面,探析了数学建模教育对教育教学改革和提高学生综合能力的途径。

[论文关键词]数学建模人才培养。

数学建模教学和数学建模竞赛对教育教学改革、学生能力培养的影响和意义是深远的。随着科学技术的发展,尤其是计算机技术的迅速发展,数学在科学研究与工程技术中的作用不断增强,其应用范围几乎覆盖了所有的学科分支,渗透到各项领域中,当今社会日益数字化,各学科各领域对实际问题的研究日益精确化、定量化和数字化,使得数学模型成为解决实际问题的重要工具。

在现实世界里,任何事物的存在形式和发展过程中,都要表现出量的变化。数学模型就是用数学语言、方法近似地刻画要解决的实际问题,对于已建立的模型采用推理、证明、数值计算等技术手段及相应的数学软件求解,并用所得结果拟合实际问题。如果结果不能说明实际问题或与实际问题相差较远,则需要适当修改模型,使之能合理解释现实问题。一个完整的数学建模过程是综合运用知识和能力、解决现实问题的过程,数学模型课就是一门培养学生数学素质,提高学生的数学应用能力的基本技能课。培养学生的数学素质,提高学生的应用能力是当前进行的大学基础数学教学改革中一项重要内容。由于数学建模课程在培养学生能力方面的重要作用,这门课程的教学已经成为数学教学改革的一个重要领域。

二、数学应用是一门技术。

事实上,当今的数学早已不再仅限于纯粹数学,它已经渗透到了生活的各个角落。著名数学家华罗庚教授在《大哉数学之为用》一文中指出:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学”。中国科学院院士王梓坤教授在《今日数学及其应用》一文中说到:“‘高新科技的基础是应用科学,而应用科学的基础是数学’。这一历史性结论充分说明了数学对国家建设的作用。其次,由于计算机的出现,今日数学已不仅是一门科学,还是一种普遍适用的技术。从宇宙到原子,从大型工程到工商管理,无不受惠于数学技术。而今日的数学兼有科技与技术的两种品质,这是其他科学所少有的。”“某些重大问题的解决,数学方法是唯一的,非此君莫属。”姜伯驹院士也讲到:“数学这门学科,第二次世界大战以来在社会生活中的作用已发生了革命性的变化,最显著的变化是在技术领域。随着计算机的.发展,数学渗入各行各业,得到广泛应用。数学已从幕后走到幕前,在很多地方直接为社会创造价值,已成为一种关键性的、普遍适用的、增强能力的技术。”现代医院中常用的先进检测仪ct,其核心技术就是一条数学定理,即radon逆变换公式的运用,一个很好的数学建模的例子。日本在普通电视生产上占有优势,但在数字化的高清晰度电视上却败在美国之下,就是因为诞生于美国的一种信息压缩的数学技术——小波技术起了关键作用。中文印刷排版的自动化、飞行器的模拟设计、指纹识别、石油地震勘探的数据处理、信息安全技术、基因位置的确定等,数学建模应用都在其中扮演着重要角色。数学的应用价值受到越来越多国家的高度重视。

三、创新教育呼唤数学建模教育。

创新是一个民族进步的灵魂,是一个国家兴旺发达的不竭动力,大学教育要挑起培养创新人才的重任,要培养学生的创新精神和创新能力。创新精神和创新能力的核心是创新思维,创新思维是以感知、记忆、思考、联想、理解等能力为基础,以综合性、探索性和求新性为特征的一种非常复杂的心理和智能活动。它是多种思维形式特别是形象思维与辩证思维的高度结合的结果。开展数学建模教育,培养数学建模创新思维是逻辑思维与非逻辑思维的结合,又是数学中发散思维与辐射思维的辩证统一,它不同于一般数学思维之处,在于它发挥了人脑的整体工作特点和潜意识活动能力,发挥了数学中形象思维、灵感思维等作用,因而能按最优化的数学方法与思路,不拘泥于原有理论的限制和具体内容的细节,完整地把握有关知识之间的联系。

数学建模教育是数学应用的必由之路,尤其21世纪是迈向知识经济的时代,科学技术的竞争十分激烈,而数学是科技发展必不可少的组成部分,许多科学技术问题说到底是数学问题。另外,数学建模课的开设也是当前素质教育和教育教学改革的需要,更是培养创新思维人才的需要。传统的数学教学,总给人一种印象,似乎数学研究的内容仅仅是从公理、公式、定义出发的逻辑推理,实际上,在实际中有用的数学技术,和其他科学一样,都是从观察开始,都需要形象思维作为先导。数学建模回复了数学研究收集数据、建立模型、求取答案,解释验证的本来面目。因此,开设以数学建模为思想内容的数学应用课程,意义更为深远。事实上,数学建模的学习和实践活动不仅仅提高了学生学习数学的积极性,培养了学生的创新思维能力,而且为学生的个性发展和创造力的发展提供了极好的发展平台。创新教育呼唤数学建模教育教学。

四、学生综合能力的提高需要数学建模。

开展数学建模的目的是改革教育教学、培养学生综合能力。数学建模教育是培养学生综合能力的一个有效途径,构造数学模型是一项创造性的工作,从建模的一段步骤和过程可知,建立一个较理想的数学模型,不仅需要数学知识,而且需要有一定的建模能力:第一,在模型准备过程中,需要有观察事物的洞察力。现实中提出的问题一般不是数学化的,要对问题建立数学模型,就需抓住问题的本质、内在联系及相关数据。第二,在模型假设中,需要有抽象的分析能力,将问题中的复杂因素条理化,简化次要因素,选择适当的变量,补充必要的假设条件才能使所建模型尽可能合理。第三,在建模中,还需要有丰富的想象力。想象是形象思维,具有灵活性和自由性,根据事物已存在的明显特征想象其内在联系及发展趋势,对事物的概况和轮廓可以有初步的描述,因而想象力是科学研究的内在因素,是成功建模的必不可少的因素。第四,在建模中,要有运用数学工具的能力,在对问题透彻理解和想象的基础上,采用不同的数学工具建立模型,会使我们从不同视角分析问题,使人们对问题能有更深刻、更本质的描述。第五,在模型求解与模型检验中,要有数学软件的应用能力。某些模型在理论上很漂亮,但求解很困难,甚至无解析解。我们通常应用某些数学软件求其数值解,这样不仅省时、省力,而且由于某些软件具有强大的符号计算功能、数值计算功能及图形可视化功能,可以使我们很容易得到计算机结果,并且直观形象地观察到这个结果。因此了解数学软件的特点,并用于求解模型,就是利用前人的智慧结晶所创造的现代化工具来解决问题。

五、数学教育的改革需要数学建模。

数学建模教育教学推动了数学教学改革,数学教育教学的改革必然需要通过数学建模来实现。过去那种封闭的题海战术教学方式将受到越来越大的冲击,数学建模教学要求学生掌握观察事物、归结数学问题的能力,这种能力的培养是与21世纪的科技发展相适应的,这必将推动数学教材教法的改革。

1.高职数学教育发展的需要。为了适应迅速发展的高等职业教育的需要,真正落实高等职业教育的培养目标,切实贯彻“以应用为目的,理论知识以必需够用为度”的原则,应本着重能力、重应用、重素质、求创新的总体思想,创新性地调整数学知识体系:第一,尊重学科,但不恪守学科。打破传统数学知识体系结构,将线性代数、微积分及概率统计基本知识有机地结合在一起,根据数学的认知规律和教学规律,合理调整知识内容,力求实现基础性、实用性和发展性三方面的和谐与统一,真正体现以学生为主体,以教师为主导的辩证统一。第二,以案例驱动的方式,用生活中的实例引出概念,并用通俗简洁的语言阐明概念的内涵和实质,对基础理论和结论尽量用几何图形、数表、案例说明其实际背景和应用价值,注重学生对知识的理解。第三,注意数学知识的实际应用。以培养学生用定性和定量相结合的方法解决实际问题的能力为宗旨,精讲多练,注意与实际应用联系较多的基础知识、基本方法和基本技能的训练。强化应用数学知识解决实际问题的能力训练,培养学生举一反三、融会贯通的能力,提高学生的创新能力和职业技能。

数学教学的重要性和方法【第四篇】

对于一个没有高考教学经验的教师来说,如何尽快地进入角色,在有限的时间里达到最佳的复习效果,就必须深入了解高考,解答大量的高考题,了解哪些是重点。首先,我仔细地研究了近年数学高考试题,纵观每年的高考数学试题,可以发现其突出的特点是它的连续性和稳定性,始终保持稳中有变的原则。

虽然高考形式有多种版本(如北京采用的是3+理综、3+文综),但只要根据我省的高考形式,重点研究一下我省近四年的高考试题,就能发现它们的一些共同特点,如试卷的结构、试题类型、考查的方式和能力要求等,从而理清复习的思路,制定相应的复习计划。

其次,关注教材和新大纲的变化也很重要,我们这届是使用旧教材的最后一次高考,要求试题相对稳定,难度和以前相当。高三复习往往时间紧张,教学内容较多,相对习题量也较多,所以有些教师在总复习中抛开课本,征订大量的复习资料,试图通过多做,反复做来完成“覆盖”高考试题的工作,结果是极大地加重的师生的负但。为了扭转这一局面,减轻负担,全面提高教学质量(此文来自出色教育资源网斐斐课件园),近年来高考数学命题组做了大量艰苦的导向工作,每年的试题都与教材有着密切的联系,有的是直接利用教材中的例题、习题、公式定理的证明作为高考题;有的是将教材中的题目略加修改、变形后作为高考题目;还有的是将教材中的题目合理拼凑、组合作为高考题的。如果说偶然从教材中找1-2道题作为高考试题可视为猎奇,不足为道的话,那么连续多年的高考数学试题每年都有许多题源于教材,命题者的良苦用心已再清楚不过了!因此,一定要高度重视教材,针对教学大纲所要求的内容和方法,把主要精力放在教材的落实上。

数学教学的重要性和方法【第五篇】

目前,新课改虽然已经普及,但是在教学实践中,仍然能看见“知识技能”与“过程方法”脱轨的痕迹,教师还是以言传身教的方式将自己的思维强加在学生身上,没有完全将思维探究过程教给学生。然而,在运用数学建模思想教学之后,就可以弥补“知识技能”与“过程方法”脱轨方面的不足。针对新课标强调的数学建模观念以及小学生的年龄特征和认知状况,在课堂教学中,教师应该明确引导学生认识建立数学模型和建模过程的重要性,让学生在自主探究的过程中感受数学模型的形成并合理地使用数学模型。如在同分母数的加减法中,我在课件中呈现出这样一组数据,24+34;56+36;……56999+24999等,学生都能很轻松地回答出计算结果。随即我问道:“同学们都能这么快回答出计算结果,想必你们都有自己的小秘诀吧?”学生异口同声:“只要分母不变,将分子相加在一起就可以了。”我再问:“同学们知道为什么只要分母不变,分子就能相加吗?”有的学生明白了,有的学生对知识点还有点模糊,随后我用课件呈现一道由28+38=58引发出来的填空题:2个(%%)+3个(%%)等于5个(%%)。学生都很快地给出了答案18。那些不明白的`学生也豁然开朗了。从这一个探究过程可以看出,让学生从实际角度出发,对所看到的事物进行分析比较,在理解分子相加分母不变的同时也就完成了算法模型的建模过程。由此可见,从学习和发展角度出发,建立数学模型是帮助学生提高数学思维的有效方法,能让学生通过建模的过程将知识技能同步,既解决了数学问题又提升了其数学素养。

二、在习题训练中,让学生孕育建模之花。

数学教学是培养学生知识积累、解题思维以及数学思想抽象化的过程。因此,教师应该有层次地设计基础习题,让练习起到孕育数学建模的目的。如在讲“圆的面积与周长”时,我列举了一道习题:如图,正方形的面积是6cm2,圆的面积是多少?为此我还设置以下的解题判断:同学们发现正方形与圆之间的关系了吗?其中一位学生说:“圆的半径就是正方形的边长,可以假设正方形的边长为a,a的平方等于6,圆的半径就是3cm,再计算(3×3)=。”随后我问:“这位同学的算法对吗(学生们开始自主探讨)?”有个学生考虑了一下后,“老师,不对,r的平方等于两个r相乘,不是两个r相加,所以这道题不能这么做。”我再问:“那有没有别的方式来计算圆的面积呢?”学生回答:“可以根据圆的面积公式直接将r的平方代入公式,也就是×6=。”这位学生的回答我十分满意,“同学们,能不能将它作为一种规律性尝试使用呢?”学生回答:“以正方形的定点为圆心,变长为半径,圆的面积就等于r乘以正方形的面积。”从上述的习题不难看出,教师在课堂教学中不能仅满足于学生算出答案,而要让学生在计算的过程中去深度地探究问题。让学生找出正方形与圆之间的关系,也就是在深度探究的过程中建立了属于学生自己的数学模型,这也是在培养学生的归纳意识和提炼问题的能力。数学的探究过程就是提炼和探究的过程,只有经历这个过程,数学知识才能得到积累沉淀,从而让学生拥有更大的智慧。因此在教学中要适时地引导学生对所学问题进行归纳总结,并且建立一个简单易懂的数学模型。综上所述,教师应该从建模的角度去研读教材,充分发掘教材中的问题情境并引导学生建立数学模型解决数学问题。同时,要利用切合实际的教材内容让学生自主探究亲自操作体验,逐步培养学生的建模意识和接替方法。

数学教学的重要性和方法【第六篇】

1.打破僵化的教学模式,倡导教学方式多样化。

语文阅读教学是一门可以自由发挥的课程,教学形式可以多样,而不应该拘泥于一个套路,比如在讲授古典诗词时,笔者采用朗读式与鉴赏式相结合的教学方法。把诗歌教学分为四步:第一,诵读节奏美;第二,司读情感美;第三,品读意境美;第四,析读艺术美。诵读主要从音韵上去感受诗词之美;悟读要求学生以诗句为证结合背景去分析诗人情感之美;品读时,学生以诗译诗,或用自己散文式的语言描绘诗词所晕染的或凄美或豪放的意境,扫描仪诗歌之本去欣赏。析读站在一个理性的高度去鉴赏诗歌独具的艺术风格。四步感受、领悟、思考、鉴赏、拓展、创新。学生逐渐形成了对诗歌赏析的一整套学法,最终达到他们爱诗的目的。

2.注重培养学生的创新能力以及自主思考问题的能力。

现代教育教学的目的,已经远远不是让学生死记硬背一些学科常识,而是培养学生独立思考的能力以及创新能力,很难想象一个没有独立思考能力的学生将来会有多大的作为,也很难想象一个缺乏创新的民族,将来会如何走向富强,基于此,教育的目的就真正得到呈现。因此教师在教学的过程中,要始终把培养学生创新能力和自主思考问题的能力摆在首位,尤其是在高中语文阅读教学的过程中,更加要重视。教师提问环节必不可少,但是要更多的鼓励学生提问,这样才能让学生思考到更加深层次的问题。

-->

-->

-->

数学教学的重要性和方法【第七篇】

教育家第斯多惠说:“教学的艺术,不在于传授本领,而在于激励,唤醒,鼓舞。”没有创造就不能“青出于蓝而胜于蓝”。语文教学以引导学生进行创造为主要目的,这就要求教师在教学过程中要重视培养学生的创造性思维,注意发展学生个性,多进行创作性的训练活动,挖掘想象力。要培养学生的创造力,就必须注重培养学生的想象力,想象是创造的先导和母体。在语文课教学中,教师应根据学生好奇、易兴奋、好探求的心理特征,抓住兴趣点,凭借一定的教学手段,使学生产生强烈的获得知识、表现艺术情感的欲望,从而主动自觉地进入想象氛围。给学生一片想象、自由发挥的空间,教师要通过挖掘、诱导、使学生想象的翅膀能在广阔的天空中翱翔,从而达到语文课堂的最佳效果。

2.确立民主平等的教师作风。

在课堂上教师要有一颗容忍之心、宽容之心。只有包容,才能接纳他人,才会允许有不同的声音、不同的意见,也才能丰富我们。在语文课堂上,教师可以设计一些比较灵活的,而又具有很大争议的问题。这样,学生在回答问题时,就会见仁见智。但,学生的能力水平有高低,个人想法也有不同,面对能力水平较低的学生或是想法奇特的同学,教师不能全盘否定他们的想法,这样做很可能会挫伤学生的积极性,使得他们今后不再愿意发言。遇到这种情况,教师不妨把它看成是一种独特的视角,借题发挥,甚至设置成相反的观点让学生争论,有时会有意想不到的效果。不但解决了问题,也调动了学生的积极性。课堂上,教师要有一种民主平等的作风,包容学生,海纳百川。因此,教师要在课堂上努力营造一种宽松、民主的学习环境和情感氛围,激发学生学习兴趣和参与意识。

数学教学的重要性和方法【第八篇】

1。1开设医药数学建模课,向学生传授数学建模的基本方法和技能。

使学生的综合应用能力、实践创新能力和综合应用素质等多方面均能得到提升和发展。

对于医学专业的学生来说,在校所学的数学基础理论课程比较有限,并且学生对纯粹的数学知识与复杂的理论推导已经极为厌倦,如果数学建模还是以传统的“灌输式”和教师“主导型”为主、简单的应用案例为主要教学内容的话,其结果势必会使学生有一种再讲数学课和做应用题的感觉,既不能很好地激发学生的学习兴趣,也不能体现数学建模的思想方法和本质特色。

因此,如何使学生摆脱这种尴尬的现状已成为我们教学的一大难点。针对这种情况,在教学模式上,我们大胆尝试研究型教学模式,即采用“从实践中来,到实践中去”的教学理念。一方面,从最现实、最热门的医学话题出发,从学生最感兴趣的问题入手,激发学生的学习兴趣和进一步学习的主动性,使他们从一开始就能进入到学习的角色中去;另一方面,通过开展多种方式的实践教学活动,使学生在实践中掌握数学建模的常用方法和基本技能,忽略繁琐的数学推导过程,让学生体会发现问题和思考问题的过程,培养学生解决问题的创新能力。

1。2组织兴趣研讨班,培养学生数学建模的实践能力。

近些年来,我们开设的医药数学建模课受到了学生的一致好评,其关键之处在于我们一改传统的教学模式,通过组织数学建模兴趣研讨班,让每位同学都能充分地参与到研究中去并且使每位学生都有发言的机会。这些举措旨在进一步激发学生的创新意识,提高学生的`数学建模实践能力。研讨班面向全校各类医学专业的学生,并以三人为单位,划分成若干个组,通过专题研讨的形式开展活动。实践证明:通过这种研讨过程,学生不仅对所学的医学知识有了更深刻的理解与认识,在文献资料查阅、计算机编程、语言表达能力等诸多方面也都有了显著的提高。通过这个过程的学习,为学生今后从事医学科研工作打下了良好的基础。

2、优化教学方法,提升综合应用素质的培养效果。

2。1突出应用思想,培养学生对知识的发现能力。

为了有效的培养学生综合应用能力和深层次学习的习惯与意识,我们在教学方法上一改往日的“讲透,讲懂”的方法,忽略纯理论的繁琐推导,突出知识的应用思想和应用意识,让学生带着问题上课,尝试在解决问题中与教师进行交流,下课带着问题回去。

在课堂教学中,重点讲解发现问题和解决问题的方法与技巧。通过课前作业,引导学生自我发现问题;通过课堂讲解和研讨,引导学生解决问题;通过课后作业,总结和巩固所学知识,学习应用与拓展知识。这种完全以学生为主,教师为辅的做法,有利于培养学生树立勇于探索求知的信心和探索新知识的能力与意识,提高学生的创新能力和敏锐的洞察力及想象力,从而提升学生的综合应用素质。

2。2以热门的医学问题为主线,贯穿数学建模的知识点。

在现实生活中的实际问题是比较复杂的,往往单一的方法是难以解决的,通常是需要多种方法的综合应用方能解决。

因此,以实际问题驱动的教学模式,主要是引导学生如何将复杂的实际问题分解为一系列简单的小问题,在解决每一个小问题的过程中,让学生学习并掌握相关的数学知识与方法。这种在应用中学习的教学方法,在很大程度上解决了学生普遍存在的“学数学有什么用、学了数学不知怎么用”的困惑。

2。3倡导举一反三,增强学生的综合应用素质。

在整个教学过程中,贯穿以学生为主体,通过案例分析引导学生的思维方法,针对一个案例的解决过程和方法,要求实现举一反三,促使学生对所掌握的知识进行重组再现和优化构建,让学生在学习和问题的解决中学会不断地总结与归纳,用成功的方法再去演绎解决新的问题,通过不断地归纳演绎、对比分析、总结经验、弥补不足,进一步学习相关知识和方法,再进行实践,从而不断增强自身的综合应用能力和素质。

3结语。

随着医学院校教育理念的转变以及教育体制改革的深入,对培养适应科学技术迅速发展的创新型医学人才提出了更高的要求。如何培养出具有创新能力、综合素质高的专业人才已成为亟待解决的问题之一。本文探讨了医药数学建模课程的开设对培养大学生实践创新能力的几点做法。教学实践证明:数学建模课充分锻炼了学生的各项能力,是提高医学专业学生综合应用素质行之有效的方法。

相关推荐

热门文档

48 1674191