乘方教学设计理念精编5篇
【导读预览】此篇优秀范文“乘方教学设计理念精编5篇”由阿拉题库网友为您整理分享,以供您参考学习之用,希望此篇资料对您有所帮助,喜欢就复制下载支持吧!
乘方教学设计理念【第一篇】
1、认知目标
正确理解乘方、幂、指数、底数等概念,在现实背景中理解有理数乘方的意义,会进行有理数乘方的运算。
2、能力目标
(1).通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。
(2).使学生能够灵活地进行乘方运算。
3、情感目标
让学生体会数学与生活的密切联系,培养学生灵活处理现实问题的能力。
1、教学重点:正确理解乘方的意义,掌握乘方运算法则。
2、教学难点:正确理解乘方、底数、指数的概念,并合理运算,
3、教学关键:弄清底数、指数、幂等概念,区分-an与(-a)n的意义。
考虑到七年级学生的认知水平和结构以及思维活动特点,本节课采用多媒体直观教学法,联想比较、发现教学法,设疑思考法,逐步渗透法和师生交流相结合的方法。
1、创设情境,导入新课:
这一章我们主要学习了有理数的计算,其实有理数的计算在生活中无处不在。有一种游戏叫“算24点”,它是一种常见的扑克牌游戏,不知道大家有没有玩过?那我们现在约定扑克牌中黑色数字为正,红色数字为负,每次抽取4张,用加、减、乘、除四种运算使结果为24。
师:假如我现在抽取的是黑3红3黑4红5 (幻灯片放映图片)如何算24?
师:如果四张都是3呢?
生答:-3 - 3×3×(-3)=333324
师:现在老师把扑克牌拿掉一张红3,变成2个黑3,1个红3,大家有办法凑成24吗?
生:思考几分钟后,有同学会想出33(3)的答案
师:观察这个式子,有我们以前学过的3次方运算,那它是不是乘法运算?可以告诉大家,它是一种乘方运算,那是不是所有的乘方运算都是乘法运算,它与乘法运算又有怎样的关系?那我们今天就一起来研究“有理数的乘方”,相信学过之后,对你解决心中的疑问会有很大的帮助。(自然引入新课)
2、动手实践,共同探索乘方的定义
学生活动:请同学们拿出一张纸进行对折,再对折
问题:(1)对折一次有几层? 2
(2)对折二次有几层? 224
(3)对折三次有几层? 2228
(4)对折四次有几层? 222216
师:一直对折下去,你会发现什么?
生:每一次都是前面的2倍。
师:请同学们猜想:对折20次有几层?怎样去列式?
生:20个2相乘
师:写起来很麻烦,既浪费时间又浪费空间,有没有简单记法?
简记:22 23 24
师:请同学们总结对折n次有几层?可以简记为什么?
2×2×2×2×2
n个2
生:可简记为:2n
aaa?师:猜想:a生:an
n个a
师:怎样读呢?生:读作a的n次方
老师总结:求n个相同因数的积的运算叫乘方;乘方运算的结果叫幂;(教师解说乘方的特殊性),在an中,a
的因数),n叫做指数(相同因数的个数)。
注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.小试牛刀:
练习一:把下列各式写成乘方运算的形式:
6×6×6= (-3) (-3) (-3) (-3)=
××××= 1
21
21
21
21
21
2=
注意:当底数是负数或分数时,底数一定要加上括弧,这也是辩认底数的方法.练习二、说出下列各式的底数、指数、及其意义
543431126
3.学生分小组讨论,总结乘方运算的性质
师:我们在进行有理数乘法计算的时候,要先确定积的符号,然后再把绝对值相乘。我们知道乘方是一种特殊的乘法运算,那对于乘方运算的结果如何来确定积的符号呢?用幻灯片出示表格,计算后,请同桌之间进行讨论并总结。 (师进行适当的引导,从底数和指数两方面进行考虑)
教师再对各种情况进行分析总结。
师生总结:负数的奇次幂是负数,负数的偶次幂是正数,正数的任何次幂都是正
数,0的任何正整数次幂都为0。
4、应用新知,尝试练习:在七年级数学晚会上,有6个同学藏在盾牌后面,男同学的盾牌上写的是一个正数,女同学的盾牌上写的是一个负数,这6个盾牌如下图所示,请算一算,盾牌后面男女生各有多少人?
(-3)15 ;(-5)8;(-7)6;(-10)25;123;(-16)9
乘方的运算是本节内容的第二个难点,符号确定后,学生往往容易犯直接拿底数和指数相乘的错误,所以准备了下面的例题,且要求学生写出相应的过程,加深对乘方运算的理解
例1:计算(教师板演一题后请学生板演)
(1) 26 (5) 62
(2) 73
44(3) (3) (6) 3
33(4)(4) (7) 4
比一比:(1)与(5)一样吗?(3)与(6)一样吗?(4)与(7)一样吗?
小结:一定要先找出底数和指数,确定符号后再去计算。
例12:计算:(1) 2522,(2)()3,(3),(4),(5)4 53533334
比一比:(2)与(3)一样吗?(4)与(5)一样吗?
总结:负数和分数的乘方书写时,一定要把整个负数和分数用小括号括起来。
5、课外探究
一张纸厚度为,把它连续对折30次后厚度将是珠峰的30倍。试着去计算一下,这句话对不对。
6、归纳总结,形成体系:
1、乘方是特殊的乘法运算,所谓特殊就是所乘的因数是相同的;
特别提醒:底数为负数和分数时,一定要用括号把负数和分数括起来
2
3、进行乘方运算应先定符号后计算,要确定符号要先确定底数和指数。
7、作业布置:习题第1、2题;
乘方教学设计理念【第二篇】
1.知识与技能
理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质.
2.过程与方法
经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力,通过情境教学,培养学生应用能力.
3.情感、态度与价值观
培养学生合作交流意义和探索精神,让学生体会数学的应用价值.
1.重点:幂的乘方法则.
2.难点:幂的乘方法则的推导过程及灵活应用.
3.关键:要突破这个难点,在引导这个推导过程时,步步深入,层层引导,?要求对性质深入地理解.
采用“探讨、交流、合作”的教学方法,让学生在互动交流中,认识幂的乘方法则.
情境导入
大家知道太阳,木星和月亮的.体积的大致比例吗?我可以告诉你,?木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r,那么,?请同学
解:设地球的半径为1,则木星的半径就是102,因此,木星的体积为423?·v木星=(10)=?(引入课题).
3 教师引导(102)3=?利用幂的意义来推导.
学生活动有些同学这时无从下手.
教师启发请同学们思考一下a3代表什么?(102)3呢?
学生回答a=a×a×a,指3个a相乘.(10)=10×10×10,就变成了同底数幂乘法运算,根据同底数幂乘法运算法则,底数不变,指数相加,10×10×10=10因此(102)3=106.
教师活动下面有问题:2222+2+=10,?6利用刚才的推导方法推导下面几个题目:
(1)(a2)3;(2)(24)3;(3)(bn)3;(4)-(x2)2.
学生活动推导上面的问题,个别同学上讲台演示.
教师推进请同学们根据所推导的几个题目,推导一下(a)的结果是多少?
学生活动归纳总结并进行小组讨论,最后得出结论:
(a)=(am?am???am)?a???n个ammn???m?m?mn个m= amn.
评析:通过问题的提出,再依据“问题推进”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动建构,获取新知:幂的乘方,底数不变,指数相乘.
例计算:
(1)(103)5;(2)(b3)4;(3)(xn)3;(4)-(x7)7.
思路点拨要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算.
教师活动启发学生共同完成例题.学生活动在教师启发下,完成例题的问题:并进一步理解幂的乘方法则:解:(1)(10)=×5=10;(3)(x)=x15n3n×3=x;3n(2)(b3)4=b3×4=b12;(4)-(x7)7=-x7×7=-x49.
课本p143练习.
探研时空
计算:-x·x·(x)+x.
教师活动巡视、关注中等、中下的学生,媒体显示练习题.
学生活动书面练习、板演.
1.幂的乘方(am)n=amn(m,n都是正整数)使用范围:幂的乘方.方法:底数不变,指数相乘.
2.知识拓展:这里的底数、指数可以是数,可以是字母,?也可以是单项式或多项式.3.幂的乘方法则与同底数幂的乘法法则区别在于,一个是“指数相乘”,?一个是“指数相加”.
课本p148习题15.1第
板书设计
乘方教学设计理念【第三篇】
知识目标:经历探索积的乘方的运算发展推理能力和有条理的表达能力。学习积的乘方的运算法则,提高解决问题的能力。进一步体会幂的意义。理解积的乘方运算法则,能解决一些实际问题。
能力目标:能结合以往知识探究新知,熟练掌握积的乘方的运算法则。
情感目标:提高学生解决问题的能力,发展推理思维,体会数学的应用价值,增强自信心。
会用积的乘方性质进行计算
灵活应用公式。
自学课本p143-144
1课时
一、课前阅读。
自已阅读课本p143-144,尝试完成下列问题:
(1)(2a)3;
(2)(-5b)3;
(3)(xy)2;
(4)(-2x3)4
二、新课学习。
(一)引入:填空,看看运算过程用到哪些运算律?运算结果有什么规律?
(1)(ab)2=(ab)÷(ab)=(a÷a)÷(b÷b)=a()b();
(2)(ab)3_______=_______=a()b()。
(3)(ab)n=______=_______=a()b()
(二)阅读效果交流。
1、运用乘方的意义进行运算。
教师点拨关于第(2)、(3)运算,底数是ab,把它看成一个整体进行运算。用乘法交换律和结合律最后用同底数幂的乘法进行运算。
2、在观察运算规律的时候,从底数和指数两方面考虑。
学生总结我们可以得到的规律是:
符号表示:一般地,我们有(ab)n=anbn(n为正整数)
语言叙述:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
(三)阅读中学习。
1、例1、(1)(-5bc)3;(2)(xy2)2;(3)(-2xy3)4.
阅读后分析:本题是否是公式的直接应用?能否沿用公式的形式?
阅读后讲解:注意系数也要乘方,注意符号。公式拓展:(abc)n=anb
教师点拨在初学阶段,按照公式逐步运算。可与课前阅读题目相比较,考察题目间的联系和区别,运算的时候要注意符号。
2、例2、2(x3)2÷x3-(3x3)3+(5x)2÷x7
①阅读后分析:从形式上看,是公式的扩展,包含了多种公式的应用。并包含了多种运算。
②阅读后讲解:学会举一反三用联系的观点看问题。运算顺序要遵循先算乘方,后算乘除,最后算加减。
解:原式=2x6÷x3-27x9+25x2÷x7
=2x9-27x9+25x9=0
③阅读后反思:a、形式上包含积的乘方,也用到同底数幂的乘法。
b、“积”的形式,可以是几个多项式相乘。
c、用到整体思想。
教师点拨公式的拓展应用,上述例题易错点有系数忘记乘方、负数的乘方所得结果的符号。运算时注意运算顺序。
3、对应练习
(-2x3)3÷(x2)2+x13
①阅读后分析:本题既有用到积的乘方,又考察了同底数幂的乘法。按照运算法则运算即可,注意系数和符号。
②阅读后讲解:一般的运算顺序是先算乘除后算加减,有乘方的先算乘方。
③阅读后反思:本题是公式的灵活应用,要求同学首先知道运算顺序,其次选对公式。
教师点拨运算要认真仔细、熟记运算法则。
三、课堂拓展练习。
1、阅读下列材料,完成后面练习
an÷bn=(ab)n(n为正整数)
an÷bn=──幂的意义
=──乘法交换律、结合律
=(ab)n──乘方的意义
教师点拨积的乘方法则可以进行逆运算。即an÷bn=(ab)n(n为正整数)。
2、对应练习:
例1、()7×88
阅读后分析:仿照阅读材料,可做适当变形逆用公式。
阅读后解答:
解:原式=()7×87×8
=(×8)7×8
=1×8
=8
对应练习()8×4102m×4m×()m
教师点拨活用公式、逆用公式是本章的一个重点。
例2、已知2m=3,2n=5,求23m+2n的值。
阅读后分析:按照公式的逆用,求23m+2n的值,由已知条件不能求出m,n的值,因此可以想到将2m,2n整体代入,这就需要逆用同底数幂乘法的`运算性质和幂的乘方的运算性质。
阅读后讲解:学生黑板演示,学生纠错。
2、综合题
探讨如何简便运算:()20xx×[(-5)20xx]2
解法一:()20xx×[(-5)20xx]2解法二:()20xx×[(-5)20xx]2
=()20xx×54008=()20xx×[(-5)2]20xx
=()4008×54008=()20xx×(25)20xx
=(×5)4008=(×25)20xx
=14008=12004
=1=1
教师点拨逆用积的乘方法则anbn=(ab)n可以化简一些复杂的计算。
解题后反思:这些练习用到了哪些知识点,体现了哪些数学思想和方法?
四、学习后小结。
重新浏览教材,说一说你有什么收获。
学生总结,教师强调三点:
1、积的乘方法则:积的乘方等于每一个因式乘方的积。即(ab)n=an÷bn(n为正整数)。
2、三个或三个以上的因式的积的乘方也具有这一性质。如(abc)n=an÷bn(n为正整数)。
3、积的乘方法则也可以逆用。即an÷bn=(ab)n,an÷bn=(abc)n,(n为正整数)。
教师点拨
1、总结积的乘方法则,理解它的真正含义。
2、幂的三条运算法则的综合运用
五、课后作业。
详见配套练习
乘方教学设计理念【第四篇】
使学生理解指数是正整数的乘方的意义,并能正确进行有理数的乘方运算.
乘方的意义.
正确理解乘方、底数、指数的概念并合理运算.
教学过程
1.乘方的定义及意义
这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,相同因数a叫做底数,相同因数的个数n叫做指数,an读作a的n次方.an看作是a的n次方的.结果时,也可读作a的n次幂.
如:(—2)5,底数是—2,指数是5,读作—2的五次方或—2的五次幂.
一般地说,指数是几,就叫做底数的几次方或几次幂.说明:
(1)乘方是一种运算,是已知底数、指数求幂的运算.如(—2)5=—32是已知底数为—2,指数为5,求得幂是—32.an本身既是结果也是运算符号.同加、减、乘、除运算一样,乘方运算可认为是第五种运算.见下表:
(3)当n是2时,可读作平方;当n是3时,可读作立方.如:52读作5的平方;103读作10的立方.a2读作a的平方,a3读作a的立方.
练习:说出下列各数表示的意义,并指出其中的底数、指数、幂及它们的读法.
2.乘方运算:
提问:前边练习中各数的幂是如何计算出来的?回答:根据乘方的定义计算出来的.
根据乘方定义,an就是n个a相乘,所以,可以利用有理数乘法运算来进行有理数的乘方运算.例1计算:
解:(1)(—3)4=(—3)(—3)(—3)(—3)=81;(2)—34=—(3)(3)(3)(3)=—81;
说明:
(1)根据有理数乘法的运算法则,由(1)(3)不难归纳出乘方运算的符号法则:正数的任何次幂都是正数.负数的奇次幂是负数,负数的偶数次幂是正数.
(2)由(1)(2)看出(—3)4与—34不同,(—3)4读作—3的4次幂,是负数的偶次幂,结果是正数,—34读作3的4次幂的相反数,结果是负数;又:(—3)4的底数是—3,指数4是管着“—”号的,而—34的底数是3,指数4并不管“—”号.注意问题:负数的乘方,在书写时一定要把整个负数(连同符号)用小括号括起来.
注意问题:分数的乘方,在书写时也要用括号把分数括起来.例
2计算:
(1)—3×24;(2)(—3×2)4.解:
(1)—3×24=—3×16=—48;(2)(—3×2)4=(—6)4=1296.
说明:算式中没有顺序符号的应按先乘方、后乘除、最后加减的顺序去做,有顺序符号的应先做括号内的.
例
3当x=—4,y=—3时,求下列各式的值:(1)(x+y)2;(2)x2—y2;(3(x—1)2+y;(4)x3—y3.解:当x=—4,y=—3时,
(1)(x+y)2=(—4—3)2=(—7)2=49;(2)x2—y2=(—4)2—(—3)2=16—9=7;
(3)(x—1)2+y=(—4—1)2+(—3)=25—3=22;(4)x3—y3=(—4)3—(—3)3=—64+27=—37.课堂练习
1.口答计算:
(—1)10;
(—1)7;83;(—5)3;
010;的偶次幂等于1.
2.计算:
(1)—(—2)4;(2)4·(—2)3;(3)32—23;(4)—32—(—2)2;
(5)—22+(—3)2;(6)(—2)2(—3)2;(7)—22×(—3)2;(8)—(— 3)2(—23);(9)—13—3(—1)3.三、小结
指导学生看书,强调正确理解乘方的意义,底数、指数、幂的概念;以及运算中注意的问题.
乘方教学设计理念【第五篇】
八年级上册第十四章《整式的乘除与因式分解》第一节第二课时“幂的乘方”。
知识与技能目标:通过观察、类比、归纳、猜想、证明,经历探索幂的乘方法则的发生过程;掌握幂乘方法则;会运用法则进行有关计算。
过程与方法目标:培养学生观察探究能力,合作交流能力,解决问题的能力和对学习的反思能力;体会具体到抽象再到具体、转化的数学思想。
情感、态度与价值观目标:体验用数学知识解决问题的乐趣,培养学生热爱数学的情感。通过老师的及时表扬、鼓励,让学生体验成功的乐趣。
重点:幂的乘方法则的生成及应用。
难点:区别幂的乘方运算与同底数幂的乘法运算。
教法:主要采用“引导探究法”——先创设情境让学生独立思考,再鼓励学生合作交流,探索其中的规律,获得新知,体验探索数学知识的快乐。
学法:主要采用“研讨式学习”——让学生在自主探索、合作交
流的活动中,体验探究的过程,主动建构知识,同时培养学生动口、动手、动脑的能力。
教学手段:采用多媒体辅助教学。
本节课主要让学生在原有的认知基础上,主动建构新知,分以下几个教学活动完成:
1、活动一:温故知新,铺垫新知。
2、活动二:创设情境,探索新知。
3、活动三:解决问题,应用新知。
4、活动四:反馈练习,巩固新知。
5、活动五:综合变式,拓展新知。
6、活动六:学有所思,感悟新知。
7、活动七:完成作业,回味新知。
活动一:温故知新,铺垫新知
1、知识回顾:口述同底数幂的乘法法则:am·an= am+n(m、n都是正整数)
同底数幂相乘,底数不变,指数相加。
2、计算:
(1)a6·a2 = a8(2)x2·x3·x4 = x9(3)(-x)3·(-x)5=(-x)8=x8(4)a2·a3 + a4·a=2a5
3、下面的计算对不对?如果不对应该怎样改正?(1)x3·x3= 2x3(2)x3 + x3= x6(3)a·a3 = a3
4、若am=3,an=2,则am+n 。
5、小结:同底数幂来相乘,底数不变指数加;用准法则是关键,正反两用才到家。
活动二:创设情境,探索新知
(1)(32)3=32×32×32=36(2)(a2)3= a2·a2·a2= a6(3)(am)3= am·am·am = a3m(m是正整数)
(1)通过上面的练习,你发现了什么?(幂的乘方,底数不变,指数相乘)
(2)对于任意底数a与任意正整数m、n,(am)n=?n个am(am)n =am 。am 。?。am(乘方的意义)n个m = am+m+?+m(同底数幂的乘法法则)= amn(乘法的定义)
数学语言:(am)n = amn(m、n是正整数)
文字语言:幂的乘方,底数不变,指数相乘。
活动三:解决问题,应用新知
例题教学:计算:
(1)(103)5(2)(a4)5(3)(am)2(4)–(x4)3解:(1)(103)5 =103×5 =1015(2)(a4)5= a4×5= a20(3)(am)2 = am 。2 = a2m(4)–(x4)3= –x4×3= –x12活动四:反馈练习,巩固新知
1、计算:
(1)(x3)2(2)[(a-b)3]4(3)–(xm)5(4)(a2)3·a3
2、快速口答:(1)a3·a3=(2)a3+a3=(3)(a3)3 =活动五:综合变式,拓展新知
1、综合练习:a6 + a4·a2 +(a3)2
2、幂的乘方法则的逆用公式:amn =(am)n =(an)m
3、拓展练习:若am=5,则a2m
活动六:学有所思,感悟新知
(1)本节课你的主要收获是什么?(学习了“幂的乘方运算法则”)语言叙述:幂的乘方,底数不变,指数相乘。
符号叙述:(am)n = amn(m、n是正整数)(2)你认为在运用“幂的乘方运算法则”,重点应该注意什么?(如“注意与同底数幂的乘法法则相区别”、“注意幂的乘方法则可以逆用”等)
(3)你能用几句顺口溜来概括本节所学知识和注意事项吗?(参考:幂的乘方有法则,底数不变指数乘;区分法则很重要,正反两用才入道。)活动七:完成作业,回味新知
必做题:教材第104页习题14·1第1题的
3、4两个小题。
附加题:
1、计算:(1)a2·a4+(a3)2(2)(x3)2·(x4)2
2、比较大小:233和322