首页 > 公文资料 > 其它公文 >

数学教学计划思维导图热选【范例10篇】

网友发表时间 1759311

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“数学教学计划思维导图热选【范例10篇】”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

数学教学计划思维导图【第一篇】

1、认为“开明君主制度是最好的政治制度”的思想家是()。

a、伏尔泰。

b、孟德斯鸠。

c、卢梭。

d、狄德罗。

2、下列主张中,不属于伏尔泰的是()。

a.反对封建专制制度。

b.主张开明君主执政。

c.批判天主教会的黑暗腐朽。

d.倡导三权分立学说。

3、对近代自然科学发展影响最大的是()。

a、万有引力定律。

b、微积分的创建。

c、力学三定律。

d、《物种起源》的出版。

4、现代文明与科学进步密不可分。然而,某著名科学家却说:“原子释放出来的能量已改变了除我们的思维方式以外的一切,因此,我们正在走向空前的灾难。”这位科学家是()。

a、牛顿。

b、瓦特。

c、达尔文。

d、爱因斯坦。

5、18世纪中期以后,哪一种学说的兴起打破“生物是神创造的,是一成不变的”这一观点()。

a、原子—分子结构说。

b、万有引力定律。

c、生物进化学说。

d、太阳中心说。

6、“我要扼住命运的咽喉,它决不能使我完全屈服。”这是谁的名言?()。

a、梵高。

b、贝多芬。

c、托尔斯泰。

d、斯特劳斯。

7、以下作品中表达贝多芬反对君主制的是()。

a、《英雄交响曲》。

b、《命运交响曲》。

c、《月光交响曲》。

d、《蓝色多瑙河》。

8、要想了解俄国人民是如何反抗拿破仑的,你可以去图书室借阅()。

a、《战争与和平》。

b、《安娜卡列尼娜》。

c、《复活》。

d、《母亲》。

9.被列宁称为“俄国革命的镜子”的作家是()。

a.托尔斯泰。

b.屠格涅夫。

c.果戈里。

d.妥思托耶夫斯基。

数学教学计划思维导图【第二篇】

利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关要验证全等三角形,不需验证所有边及所有角也对应地相同。以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定:。

s:各三角形的三条边的长度都对应相等的话,该两个三角形就是全等三角形。

sa(边、角、边):各三角形的其中两条边的长度都对应相等,且这两条边的夹角(即这两条边组成的角)都对应相等的话,该两个三角形就是全等三角形。

asa(angle-side-angle)(角、边、角):各三角形的其中两个角都对应相等,且这两个角的夹边(即公共边,)都对应相等的话,该两个三角形就是全等三角形。

aa(角、角、边):各三角形的其中两个角都对应相等,且其中一个角的对边(三角形内除组成这个角的两边以外的那条边)或邻边(即组成这个角的一条边)对应相等的话,该两个三角形就是全等三角形。

hl定理(hypotenuse-leg)(斜边、直角边):直角三角形中一条斜边和一条直角边都对应相等,该两个三角形就是全等三角形。

数学教学计划思维导图【第三篇】

主要知识点:

1.平面上两直线的位置关系;垂线;对顶角;邻补角。

2.同位角、内错角、同旁内角。

3.两点的距离、点到直线的距离、两条平行线间的距离。

4.平行线的判定、性质。

中考分值:

可能会考一题选择或填空(4分);但它是几何证明的基础,也是从现在开始接触几何证明。

重难点:

1.“三线八角”的准确辨析与应用。

2.本章是第一次见到几何证明题,证明题的理解和证明过程的书写都有很大的难度。

第十四章三角形。

主要知识点:

1.三角形的有关概念与性质2.全等三角形的概念与性质。

3.全等三角形的判定4.等腰三角形的性质与判定。

5.等边三角形的性质与判定。

中考分值:

重难点:

1.本章知识概念比较多,记忆起来比较麻烦。

2.几何知识学的更多,几何题目更难,需要一定的证明技巧。

第十五章平面直角坐标系。

主要知识点:

1.平面直角坐标系。

2.直角坐标平面内点的运动。

中考分值:

可能会有一题选择或填空(4分);但它是学好函数必须的基础。

重难点:

1.直角坐标平面内点的坐标特征。

2.直角坐标平面内对称点的坐标特征。

数学教学计划思维导图【第四篇】

通过应用思维导图,一个想法既能迅速、深刻、完整地生成,又能始终聚焦于中心主题。因此,将思维导图应用于高中语文教学具有很多突出的优势:

1、有利于增强学生兴趣。

采用这种方式,避免了教师枯燥无味的讲解,学生的学习变被动为主动。在制作思维导图的过程中,学生会处在不断有新发现,提高了学生探究新事物的动手能力和学习能力,这会鼓励和刺激学习的主观能动性,由被动学习转为主动学习,把学习真正变成一种乐趣。尤其是在复习阶段,死板的重复会导致学生麻木、厌烦,而当他们运用自己喜欢的学习方式重访记忆通道,亲身参加到教学活动中时,则会无形中增添学习的乐趣和成功感。

2、有利于提高对知识的理解。

在制作思维导图时,通过查找关键词和核心内容,可以更好地帮助师生加强对所学知识的理解,因为思维导图通过确定因果联系、区分概念层级、组织相互关系,能够直观而有层次地显示出知识的组织结构和连接方式,以及一些重要的观点和事实证据,可以加深对各个层次及整个主题的充分理解。

3、有利于形成对知识的整体认知。

思维导图能使某一特定领域的知识以整体的、一目了然的方式呈现出来,全面展示各个关键的知识要点,直观地表现出各要点间的层次和因果等相互联系,帮助学生在头脑中建立清晰、完整、形象的知识结构体系,全面把握某方面知识的整体情况。

4、有利于提高信息综合处理能力。

在阅读、写作或研究性学习过程中,运用思维导图可以记录从各种渠道获取的信息,依其内在逻辑关系或者使用者的特定需要,对有关资料进行重组。随着思维导图的逐步完善,使用者对中心主题的理解日益深刻,以文字篇章的形式完善描述思维成果也就逐渐水到渠成。

5、有利于提高教学效率。

由于思维导图采取高度凝炼的方式概括知识要点,笔记中重要的关键词既简洁又显眼,使得师生在认知时中只需要记录关键词,复习时只需读取关键词,查阅笔记时不必在庞大的篇章中寻找要点,因此整个学习过程中都能集中精力于真正的学习主题,从而更快更有效地开展教学活动。

6、有利于提高创造性思维能力。

人的大脑是通过想像和联想来进行创造性思维的。采用单一线性的文字语言性思维方式时,由于思维单调乏味,且不易于回溯前面的思路,经常导致思维中止。运营图文并用、左右脑相互配合的思维导图进行思维时,则会不断产生新的想法和灵感,并能及时记录下来,或者随时回到前面任意一个思维中点,再次生发更多的创意,创造性思维成果就这样变得生生不息。

最有效的听课是将眼、脑、手一起运用起来,而思维导图的绘制恰巧满足了这个要求。希望未来的课堂能充满生机。

文档为doc格式。

数学教学计划思维导图【第五篇】

我们的思维是跳跃的,是多彩的,将思维的过程用图画的方式展现出来就是一个思维导图的过程。小学阶段的孩子们以形象思维为主的思考,让我们对孩子的教育方式有了新的突破性思考。

形象思维的发展程度在一定程度上决定了其他思维的发展程度。国内外研究表明,形象思维先于其他思维的发展,形象思维的发展程度在一定程度上决定了其他思维的发展程度。

爱因斯坦曾这样描述过他的思维过程:“我思考问题时,不是用语言进行思考,而是用活动的跳跃的形象进行思考,当这种思考完成以后,我要花很大力气把它们转换成语言。”另一位诺贝尔奖莸得者李政道从上世纪80年代起,每年回国两次倡导科学与艺术的结合。他在北京召开“科学与艺术研讨会”,请黄胄、华君武、吴冠中等著名画家“画科学”。李政道的画题都是近代物理最前沿的课题,涉及量子理论、宇宙起源、低温超导等领域。艺术家们用他们擅长的右脑形象思维的方式,以绘画的形式形象化的表现了这些深奥的物理学原理。

从两位大家的言行中我们看到形象思维的在思维中的地位。而小学阶段学生形象思维占优的特点让我们想到此时是培养学生形象思维的最佳时机。

抽象性与逻辑性是我们对数学的一般理解。但在《新课标》中对小学数学的学习内容和目标上的阐述,让我们对小学数学有了另一番理解。

《小学数学新课标》中对小学数学的学习内容定义了以下几个方面并给定了其达成目标。在数与代数方面,《新课标》指出“应帮助学生建立数感和符号意识,发展运算能力,树立模型思想。”;在图形与几何方面,《新课标》指出“应帮助学生建立空间观念。”“直观与推理是‘图形与几何’学习中的两个重要方面。”;在统计与概率方面,《新课标》指出“帮助学生逐渐建立起数据分析的观念是重要的。”;在综合与实践方面,《新课标》指出“‘综合与实践’是以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。”

需要说明的是“模型思想”属于形象思维中的经验形象;“空间观念”、“数据观念”属于形象思维中的直观形象;“综合实践”方面的培养的正是形象思维中的创新形象。

由上可知,《新课标》下小学阶段的数学学习主要以培养学生的形象思维和开放性认知结构为主,这不仅符合小学生形象思维占优,思维活跃,跳跃性强的特点,更为学生的终身认知打下基础。

然而我们在对形象思维的理解上存在一些误区,认为数学中的形象思维须依据几何图形的教学,从而把数学形象思维能力的培养也简单地局限在几何图形的教学之中,甚或对形象思维简单地等同与空间思维,这样的理解是不利于我们开展课堂教学,并可能对学生的终身认知也产生负面影响。由此我们对《课标》的解读上也存在了一定的偏失。

由于认识上的一些偏失,在教学环节的设定上也存在一定的不符合形象思维培养特点的问题。如创设情境后,教师一般会问一句:“你能发现哪些数学问题吗?”学生会过多地从一些数学技巧性的方面去提出一些问题。学生的思维就此从情境中出脱离出来,回到平时所理解的“数学严谨抽象”的意义上来。

所以在数学中培养学生的形象思维是对教师认识上的一种纠偏,也是对学生负责的当务之急。

数学教学计划思维导图【第六篇】

因为在最初指导学生认识思维导图的时候,我给学生展示的就是树形图。所以学生运用树形图对数学知识进行梳理比较熟练。学生在生活中早已认识了树的形状,对树干、树枝、树叶及分枝的感知非常清晰,也就很容易的联想到树干、树枝与主题、分主题的逻辑关系。所以学生运用树形图的时候比较多,也绘制的比较好。如图1是苏科版数学八年级下册第10章分式的树形思维导图.

树形图的优点是主干分支非常明确,但画起来比较麻烦。为了更简单的运用思维导图,后来我们发动学生研究更简单的思维导图形式,大家确认就把树干简化为一个圆、椭圆或正方形等简单易画的图形,如图2:学生把树干简化成一个圆环,涂上不同颜色,画上一个指针,这是苏科版数学八年级下册第8章第二节数学实验室中的转盘模型变形图,学生的这一构想即贴近课本又有一定的创造性。

箭头或框架样式的思维导图,老师在日常备课或给学生做知识梳理的时候会经常使用,非常简洁明了,而且容易绘制。只是以前我们没有把它作为一种学习方法并上升到理论高度去重视。这种结构图实际上就是一种很简单好用的思维导图,特别适合在课堂中应用。在具体的运用中我们要先总结出本节课的主题,用一个关键词表示。然后直接用箭头往下分支出二级、三级等主题,也是常见的框架结构图,学生运用起来非常简单容易上手。有好多学生把框架结构变形为椭圆形箭头图、鱼骨头型箭头图。如图3是学生梳理二次根式的箭头式思维导图。

学生的思维被打开以后,他们的想象力非常丰富,画出了许多实物型思维导图,如风筝、蝴蝶、花篮、风车等等。如图4:花篮即是主干,也就是主体部分。学生冠上各个关键词后,就能对学过的知识进行清晰的梳理和记忆。学生也非常喜欢进行这样的勾画。

我们在数学教学中经常会运用表格来进行知识的梳理和比较,能让学生一目了然的了解知识的区别与联系。这实际上也可以看作是一种思维导图,利用表格来绘制思维导图,学生比较容易接受和理解,所以,表格式思维导图也是学生比较喜欢的的一种形式。如图5是学生在学习完苏科版数学八年级下册第11章反比例函数后绘制的表格式思维导图,总结比较了一次函数与反比例函数的知识。

以上是我在指导学生运用思维导图梳理数学知识时最常用的几种方法,在具体指导的过程中,笔者首先给学生逐渐展示一些不同类型的思维导图,让学生先获得一些感性认识,在头脑中有思维导图的概念和形象,然后引导学生勾画。慢慢学生就学会了,而且非常有兴趣。学生在绘制思维导图时学到了思维的方法,找到了学习的方法。思维导图让学生真正的学会了学习,提高了学习的效率。教师真正的做到了授之以渔。学生在绘制思维导图时,把零碎的知识整理成相互联系的知识框架图。这样的过程不仅培养了学生的思维能力,又提升了学生的记忆力,同时更好的复习了所学的知识,这是一种很好的教与学的方法。

数学教学计划思维导图【第七篇】

1、知名中小学教育专家团队精心研究,有雄厚的理论基础;融合全国数十名一线高级教师的教学经验和多省市状元的学习方法,有丰富的实践经验。

2、将知识点以图形的形式展现出来,把复杂的数学逻辑推理简单化,完全符合人类记忆理解能力特点,效果提升数百倍。

3、《数学思维导图》编制名师和专家亲临授课,精彩讲授。

4、数学思维导图大讲堂结合个性化一对一辅导,效果更佳。

5、讲堂实时互动,提升学生对数学知识点的记忆理解能力。

8、其他作用:思维导图对数学考试,思考问题,集中注意力,分析解决问题,知识剖析及归类等也有很大的作用。

数学教学计划思维导图【第八篇】

1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。

3.经过证明被确认正确的命题叫做定理。

我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)。

数学教学计划思维导图【第九篇】

借助思维导图的方式对学习自主学习、合作探究的能力进行培养。

随着新课改的实施以及深入,对教学的教学方式有了新的要求,需要将以往将课堂知识传授为主的形式进行改变,使学生能够积极主动的进行学习,并使学生能够掌握基础知识以及基本技能,最终使学生的价值观更具正确性。借助思维导图的形式进行教学,能够使学生的主体作用得到充分的发挥,使学生的学习积极性得以调动,并能够促进学生自学能力、理解分析能力以及归纳总结能力的培养。

在实际教学过程中,教师需要充分借助思维导图的作用,改变知识枯燥乏味的特点,使学生真正拥有学习的主动权,能够真正掌握学习方法。具体实施方法为:首先,教师应该将本单元的思维导图大纲进行制作,对学习进行讲解;其次,将学生分为小组形式,借助对教材以及资料的阅读,查阅网络上所搜集的资料,为课堂学习做好准备;第三,对学习进行指导帮助,使其应用协作学习的方式,将所查找到的资料借助mindmanager软件将思维导图描绘出来;最后,在课程上,将各个小组的思维导图结果进行展示,由教师做出最后的评价,针对作品中的不足,学习应该积极改进。在此学习过程中,学生也能够牢固的掌握知识。

借助思维导图的方式,使学生分析解决问题的能力得到培养。

相关学者指出,知识的意义体现在知识的用法当中,也就是说,知识的意义体现在学习分析解决问题的能力,是在实际生活中不断积累的。在学习中,学生借助数学知识对问题进行解决时必然会存在一定困难,此时就需要教师做好引导工作,借助思维导图的作用,使学生分析以及解决问题的能力得以培养。

此外,将信息技术与数学学科充分的进行结合,对思维导图进行有效的利用,就能够将数学知识间的条块分割状态转变,使其能够相互结合,形成一个整体,使知识能够相互融合,保证数学新课程的有效实施。

从教学方法入手。

首先,树立以思为学的目标。正确的目标方向是教学成功的开始。作为一名高素质的教师,我们要树立以思为学的目标,而不是为学而学。在具体的教学过程中,我们要减少刻板繁重的家庭作业,多布置一些思维型的题目让学生去思考,去自主探讨,而不是将学生淹没在繁重的作业中去。其次,以感性思维引导学生。由于小学生目前的思维状态是感性多于理性,而抽象思维的提高又是一个极为缓慢的过程,所以作为一名合格的人民教师,我们需要在这个过程中运用更为感性直观的方法去引导学生去理解那些抽象的概念、公式、方法。

从而在我们有意识的引导中逐步提高学生的抽象思维能力。最后,形成奖励竞争机制。小学生的学习是以引导型为主的,这种有意识的引导需要靠一定的竞争奖励机制来完成,因为这样可以激发学生的学习动力,这种动力正是学生自我思考与探讨需要的条件。只有在这种机制中,学生才会在我们有效的引导中可以不断地去思考、去探讨,从而提高他们自己的抽象思维能力。

培养学生的实践操作能力。

只有学生动手参与学生才能记得牢,因为在学生的操作过程中不仅是身体的动作,而是与大脑的思维活动紧密联系在一起的,大脑支配人体的各个器官进行协调的工作。操作中学生不但要观察、分析、比较、还要进行抽象,概括,从中发展思维。如教学“长方体和正方体体积的认识”时,我让学生通过观察,触摸,数一数长方体有几个面,学生用多种方法数出长方体有6个面。

这时,我继续追问:“这些面有什么特点?”有的学生用手摸,有的学生用尺量,有的把两块长方体拼在一起进行比较,有的学生把长方体相对的边沿着外框画在纸上比较,等等。通过动手实际操作初步感知长方体相对的面的大小、形状一样,掌握了长方体的特征,通过实践探索得出的知识学生印象深刻,记得扎实,正是这样学生在思维中操作,在动手中思维,并通过语言将过程“内化”为思维,使思维得到发展。

数学教学计划思维导图【第十篇】

1、三角形任意两边之和大于第三边,确形任意两边之差小于第三边。

2、三角形三个内角的和等于180度。

3、直角三角形的两个锐角互余。

4、三角形的三条角平分线交于一点,三条中线交于一点;三角形的三条高所在的直线交于一点。

5、直角三角形全等的条件:

斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“hl”。

(只要有任意两条边相等,这两个直角三角形就全等)。

6、三角形全等的条件:

(1)三边对应相等的两个三角形全等,简写为“边边边”或“sss”。

(2)两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“asa”。

(3)两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“aas”。

(4)两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“sas”。

7、等腰三角形的特征:

(1)有两条边相等的三角形叫做等腰三角形;。

(2)等腰三角形是轴对称图形;。

(3)等腰三角形顶角的平分线、底边上的中线、底边上的重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴。

(4)等腰三角形的两个底角相等。

(5)等腰三角形的底角只能是锐角。

相关推荐

热门文档

70 1759311