首页 > 公文资料 > 其它公文 >

平行四边形的面积教学设计与评析样例【参考8篇】

网友发表时间 1937690

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“平行四边形的面积教学设计与评析样例【参考8篇】”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

平行四边形的面积教学设计与评析【第一篇】

1、知识与技能:

(1)使学生通过实际操作和讨论思考,探索并掌握平行四边形的面积计算公式,并能运用公式正确计算平行四边形的面积。

2、过程与方法:

使学生经历观察,操作、测量、讨论分析、比较归纳等数学活动过程,体会“等级变形”的思想方法,培养空间观念,发展初步的推理能力。

3、情感、态度与价值观:

(1)渗透转化的数学思想方法。

(2)使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。

1、理解平行四边行面积计算公式的推导过程,并正确应用平行四边形的面积计算公式解决相应的实际问题。

2、让学生在动手实践与交流中引导学生从不同的途径和方法去探索平行四边形面积的计算方法。

1、多媒体课件、自制教具。

2、每个学生准备1把剪刀、一张平行四边形纸片。

一、创设情境,引入课题:

生:

现在老师把两个图形画在了方格纸上。(课件出示两个图形)师:左边的同学来数一数这块儿长方形的地,右边的同学来数一数平行四边形的地,看看它们的面积各是多少。(注意:不满一格的都按半格计算)。

师:我们一块儿来数一数平行四边形的面积(课件)。同学们,通过数方格你们发现了什么?(疑惑)哦,原来两块儿地的面积一样大。

(通过这个故事,我们知道了对父母、对长辈要尊敬;与兄弟姐妹要和睦;就好比我们这个大家庭,我们同学之间要团结,不能为了一些小事而斤斤计较或发生矛盾,你们说是吗?)。

师:看来图形的面积大小用眼睛看是不准确的,数方格又太麻烦了,如果平行四边形的面积也有公式,是不是就方便多了。那平行四边形的面积公式到底是什么呢?我们这一节课就来研究这个内容。(板书课题)。

二、探究新知,导出公式:

1、猜想:

师:我们在来观察这两个图形,想一想,除了面积相等以外,它们还有什么关系呢?(提示:看看长和底,宽和高)。

生:

生:

师:你们是怎么推导出这个公式的呢?

师:我们四人一组可以商量商量,也可以拿出我们手中的平行四边形通过剪、拼或平移,看能不能拼成我们以前学过的平面图形?(一个图只能剪一次)。

2、验证:

(1)学生动手操作。

(2)小组演示。

(3)师课件演示。

生:

师:同学们,你们能不能完整的说说平行四边形面积公式是怎样推导的呢?

(4)推导过程:(课件显示)。

我们把一个平行四边形通过剪拼、平移把它转化成一个长方形,长方形的长与平行四边形的底相等,拼成长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积就等于底乘高。

(5)师:刚才我们不仅验证我们的猜想,而且运用的“转化”的思想。还学会了“平移”的方法,同学们的表现真不错。

师板书:s=ah。

3、面积公式的运用。

三、巩固发展、实际运用:

1、这时晶晶和贝贝遇到了一个难题,想请同学们来帮帮它们,你们愿意吗?它们在干什么呢?(课件)。

2、一幅平行四边形的装饰画高5是分米,底是高的3。5倍,这个平行四边形的面积是多少?(课件)。

四、课后延伸:

五、反思与体会:

同学们,想一想,这节课你有哪些收获呢?(生)。

师:看来,大家的收获还真不少,只要大家勤动手,勤动脑,就能学到更多的、更有趣的数学知识,并且可以运用这些数学知识来解决我们生活中的实际问题,是吗?好了,这节课我们就上到这,同学们再见!

平行四边形的面积教学设计与评析【第二篇】

教学目标:

通过看一看、剪一剪、拼一拼、比一比、算一算,使学生理解并掌握平行四边形的面积公式,并能进行简单的平行四边形的面积计算。

教学过程:

1、 让生看p69,观察方格纸上的长方形和平行四边形,并填写:

每个小方格代表1平方厘米(不满一格的,都按半格计算),数一数,长方形的面积是(   )平方厘米;平行四边形的面积是(  )平方厘米。

2、 观察并讨论:这个长方形和平行四边形有怎样的关系?

在学生讨论、回答的基础上小结得出:长方形的长和平行四边形的底相等,长方形的高和平行四边形的高相等。

1、 出示:平行四边形,请你想想办法,怎样求它的面积。(让生每人先准备两个平行四边形)。

2、 让生小组讨论,尝试。

3、 检查学生讨论的结果。如果有学生想出,让他到讲台上给其他同学介绍。

(2)比一比:这两个图形有什么关系?什么变了,什么没变?

这两个图形形状变了,但面积相等。

(3)、请你量一量长方形的长与宽,算出它的面积。

4、 总结得出。

如果用s表示平行四边形的面积,用a和h分别表示平行四边形的底和高,那么,平行四边形的面积计算公式可以写成:

s=ah。

(1)      让生独立做。

(2)      检查:18×10=18(平方米)。

(3)      注意:面积单位。

6、 看书,质疑。

三、练习。

底(厘米)。

50。

100。

9

高(厘米)。

40。

8

4

面积(平方厘米)。

12米。

25米。

50厘米。

四、总结。

五、课堂作业。

p71  5。

平行四边形的面积教学设计与评析【第三篇】

让学生经历探索平行四边形面积计算公式的过程,掌握平行四边形的面积计算方法,能解决相应的'实际问题。

(二)过程与方法

通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。

(三)情感态度和价值观

通过活动,培养学生的探索精神,感受数学与生活的密切联系。

教学重点:探索并掌握平行四边形面积计算公式。

教学难点:理解平行四边形面积计算公式的推导过程,体会转化的思想。

平行四边形卡纸一张,剪刀一把,三角尺一个,多媒体课件。

(一)创设情境,激趣导入

1。创设情境。

(1)呈现教材第86页单元主题图。(ppt课件演示)

1。怎么制作ppt课件算平行四边形面积

2。五年级上册数学组合图形面积教案

3。ppt模板怎样制作平行四边形面积推导动画

4。pppt怎么制作动画课件计算平行四边形面积

5。五年级上册数学图形与几何教案

平行四边形的面积教学设计与评析【第四篇】

知识与技能目标:

过程与方法目标:

能够运用公式解决实际问题。

情感态度与价值观:

通过公式的推导,向学生渗透事物之间的普遍联系;通过解决实际问题,提高学生对生活中处处有数学的认识。

(2)教学难点:如何让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形之间的底和高的关系。

1、课件。

2、每位同学准备两个完全一样的平行四边形,并在上面做任意一条高。小剪刀一把,尺子一把。

这节课是学生在掌握了长方形面积的基础上学习的。学生已经有了用数方格的方法来推导长方形的面积的计算公式的经验,那么这节课学生肯定也会想到同样的方法。在此基础上让学生明确怎样数方格最好最快,由此联想到隔补转化成一个面积相等的长方形。进而动手操作,找到转化后的长方形和原来平行四边形的联系,得出平行四边形的面积计算公式。

一、激情导课。

(大屏幕出示校园情景图)。

同学们,这是育才小学校门口场景图,请同学们看看图上有哪些我们认识的图形?(有长方形、正方形、平行四边形)再请大家把目光聚焦到校门口的这两块草坪,一块是(长方形),一块是(平行四边形)那么这两块草坪哪一块大呢?(猜一猜)需要知道这两块草坪的(面积)。对,谁来说说长方形的面积怎样求?那么平行四边形的面积怎样求呢?这节课我们就来一起学习一下平行四边形的面积。(板书课题:平行四边形的面积)。

看了课题,你觉得这节课我们应该达到哪些学习目标呢?(出示学习目标)。

2、运用公式解决生活中的实际问题。

师随着学生的回答在课题前板书:探究和运用。

师:好,老师相信只要同学们善于观察,积极动手,勤于思考,就能获得新知识,达到我们的学习目标,你们有信心吗?(有)。

二、民主导学。

同学们,长方形的面积是用什么方法推导出来的?(数方格)那你这节课能不能也用同样的方法推导出平行四边形的面积计算方法?(能)除了数方格的方法,还有别的方法吗?(剪拼的方法)。

任务呈现:请同学们动动手动动脑,想办法探求平行四边形的面积,并在小组内交流自己的方法。

提示:如果采用数方格的方法,同学们可以参照课本87页的表格完成。如果采用的是剪拼的方法,可以利用课前准备的学具,并参照课本88页内容进行学习探究。(现在各小组开始自己的探究活动吧!)。

自主学习:先独立动手操作,再在小组内交流自己的发现。师巡视指导。

展示交流:

1、先请数方格的小组上台展示。

预设:我们小组是这样数方格的,先数整格的(手指大屏幕),然后数半格的。(不满一格的都按半格算)这样可以数出来平行四边形一共是24格,也就是24平方米。同样长方形的面积也是24平方米。

我们还发现了平行四边形的底是6米,高是4米,把这两个数相乘正好是24平方米。

(对小组进行评价)。

师:是不是所有的平行四边形都能用数方格的方法来计算呢?如果是一个很大的平行四边形还能这样吗?(有局限性)他们组发现了底和高相乘的积正好就是平行四边形的面积,这是巧合还是必然呢?这就需要大家进一步的验证。那么,我们接下来请用不同方法的小组上台展示。

2、请用割补法的小组上台展示自己的研究成果。

预设:(1)、沿着平行四边形的高剪开,分成了一个直角三角形和一个直角梯形,然后把直角三角形平移到右边,就把平行四边形转化成了一个长方形。长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为长方形的面积是长×宽,所以平行四边形的面积就是底×高。

(师随着生的表述板书)。

(对小组进行评价)。

预设:(2)、沿着平行四边形中间的任意一条高剪开,变成了两个直角梯形,然后把其中一个梯形平移到另一个的一边,也拼成了一个长方形。同样这个长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为......所以......

(对小组进行评价)。

预设:(3)、师演示。

师:计算公式我们通常都可以用字母来表示。面积用s,底用a,高用h来表示,那么平行四边形的面积可以表示为:s=ah。

师小结:刚才我们用割补平移的方法把一个平行四边形转化成了长方形,找到了它们之间的内在联系,从而得出平行四边形的面积计算公式。接下来老师告诉你刚才平行四边形花坛的底和高,你能列式求出它的面积吗?(能)。

任务二:解决问题。

自主学习:独立在练习本上解答,完成后与小组内同学交流。

展示交流:注意指导学生的书写格式。

三、检测导结。

2、已知下面图形的面积和底,怎样求出它的高?

以上三题,做对一道得一颗星,全部做对得三颗星。

集体订正,组内互批。

反思总结:请同学们谈谈这节课的收获吧!

平行四边形的面积教学设计与评析【第五篇】

1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。

3、情感目标:通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。

教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

多媒体课件、长方行纸、平行四边形纸、剪刀、三角板等。

一、复习旧知,导入新课。

1、让学生回顾以前学习了哪些平面图形。(学习了长方形、正方形、平行四边形、三角形、梯形。)老师根据学生的回答,依次出示相应的图形。

2、老师总结多边形的概念,并让学生回答长方形、正方形的面积公式。

师板书:长方形的面积=长×宽

师:由于正方形是特殊的长方形,所以正方形的面积公式也可以归入到长方形的面积公式里面去。到目前为止,我们已经会求长方形、正方形的面积,但还有平行四边形、三角形、梯形的面积不会求。今天,我们就来继续学习多边形面积的计算。

二、动手实践,探究发现。

1、剪拼图形,渗透转化。

(1)小组研究

老师提出要求,让学生们以小组为单位,利用桌上的材料剪拼成一个平行四边形。

(2)汇报结果

第一种是把长方形关剪成了一个三角形和一个梯形,然后拼成一个平行四边行;第二种是把长方形剪成了两个三角形,然后拼成一个平行四边形;第三种是把长方形剪成了两个梯形,然后拼成一个平行四边形。

板节课题:平行四边形面积计算

2、动手实践,探究发现。

(2)学生重新剪拼,互相探讨。

(3)汇报讨论结果。

师板书:平行四边形的面积=底×高

(4)让学生齐读:平行四边形的面积等于底乘以高。

(5)让学生明白如果要计算平行四边形的面积,必须知道哪些条件?

(必须知道平行四边形的底和高)

课件展示讨论题:平行四边形的底和高是否相对应。

(6)总结平行四边形面积的字母代表公式:s=ah (师板书s=ah)

(7)比较研究方法。

三、分层训练,理解内化。

课件显示练习题

第一层:基本练习

第二层:综合练习

第三层:扩展练习

四、课堂小结,巩固新知

小结:这节课我们学习了什么?你学会了什么?

平行四边形的面积教学设计与评析【第六篇】

教学目的:1.通过剪拼摆等活动,让学生主动解决实际问题。

3.培养学生的初步的空间观念。

4.培养学生积极参与,团结合作,主动探索的精神。

教学难点:公式推导的过程。

透明的方格纸和剪刀。

教学过程:

s:数方格的方法。(教师揭示并演示)。

t:那这样的数方格的方法你有什么想说的吗?

s1:麻烦。s2:不够精确······。

s:······。

2.动手操作推倒公式。

t:那出你准备好的平行四边形,看看能不能将它们转化成我们以前学过的图形?

(先独立思考有了想法小组交流)。

s:······。

汇报:t:你是怎么样做的呢?哪个小组愿意来给大家展示一下。

s:拼成三角形,梯形,长方形······。

t:通过同学们的亲身探索操作,将平行四边形转化成了许多我们学过的图形。

知识转化:t:大家观察一下,哪种图形的面积我们会计算呢?

s:长方形。

t:请大家拿出来一张平形四边形纸片,将它转化成为长方形吧!智慧老人现在有几个问题留给大家思考,便于同学发现其中的规律。

请看小黑板:

1.你们是怎么样转化的?

2.与原来的平行四边形的关系是怎么样的?(面积对应的高与底)。

s2:面积是一样的.(学生板书)。

s3:长方形的面积是长乘宽长方形的面积=长乘宽(学生板书)。

t::哪个小组与他们的观点一致,有需要补充的吗?

s:我们是沿着另一条高折的也拼成了长方形。

t:同学们,听出来这两组同学的方法,虽然有不同的地方,但有一个共同点就是沿着高剪.

t:为什么要沿着高剪开的呢?

s:长方形有四个直角,所以我们必须沿着高来剪这样才能形成直角.

s:(学生板书:s=ah)。

小结:t:通过图形的转化,我们推出了平行四边形的面积计算公式,那我们以后再求平行四边形的面积的时候只要知道平行四边形的哪些条件(底和高)我们知道了平行四边形的底和高,我们就可以求平行四边形的(面积).

s:3×4=12(平方米)答:得买12平方米的草皮.

23。

33。

t:这道题告诉我们一个怎么样的问题?

s:对应边与对应高之间的乘积.

2.课本24页试一试说说自己的方法.

3.练一练。

总结:这节课你都学会了什么?有怎样的收获呢?

你对自己的表现满意吗?给自己来打一下分数满分是10分的话.

平行四边形的面积教学设计与评析【第七篇】

《义务教育教科书》人教版数学课本五年级上册87——88页。

平行四边形面积计算,是在学生掌握了长方形、正方形面积计算方法的基础上安排的教学内容。是学习的平面图形面积计算的进一步拓展。应用转化的数学思想方法推导平面图形面积计算公式是学生的初次接触,让学生为了解决问题主动地实现转化就成为本节课教学的关键。只要突破这一关键,其余的问题就会迎刃而解。

学生对平行四边形的特征有了一定的了解,但对平行四边形如何转化为长方形还没有经验,转化的意识也十分薄弱。因此,要让学生把转化变为一种需要,教师必须通过问题引领,为学生提供解决问题的直观材料和工具帮助学生探究,从而实现探究目标。

1、经历平行四边形面积公式的探究推导过程,掌握平行四边形面积计算方法。能应用公式解决实际问题。

2、在探究的过程中感悟“转化”的数学思想和方法。

3、通过猜测、验证、观察、发现、推导等活动,培养学生良好的数学品质。

4、引领学生回顾反思,获得基本的数学活动经验。

讲述阿凡提智斗巴依老爷的故事,激发学生的好奇心。

1、联系旧知,做出猜想。

看到这个题目,你想到了我们学过哪些有关面积的知识?

2、初步验证,感悟方法。

根据自己的猜想,测量并计算面积,然后选择合适的工具进行验证。

引导学生:可以用数方格的方法试一试。(出示方格纸中的平行四边形)。

学生数方格并来验证自己的猜想。

3、剪拼转化,发现规律。

除了数方格,我们还能用什么方法来验证呢?(学生思考)。

(1)请大家先以小组进行讨论,然后动手实践,比一比哪个小组完成的更快。

(2)展示交流。(演示)。

4、观察比较,推导公式。

s=a×h。

5、展开想象,再次验证。

是不是所有的平行四边形都可以转化成长方形?面积都可以用底乘高来计算呢?

学生先闭眼想象,再借助手中的工具加以验证。

6、回顾反思,总结经验。

回顾我们推导平行四边形面积计算公式的探究过程,我们是怎样推导出面积计算公式的,从中可以获得哪些经验。

然后找到转化前、后图形之间的联系。(寻找—联系)。

根据长方形面积公式推导出平行四边形面积公式。(推导—公式)。

1、解决实际问题。

2、出示如下图。

算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)。

3、下面是块近似平行四边形的菜地(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)。

王大爷:43×23李大爷43×20,请你判断一下,谁对?谁错?

4、现在你明白阿凡提是怎么打败巴依的了吗?

引导学生明白:阿凡提利用了平行四边形易变形的特性调整了篱笆。

思考:阿凡提调整篱笆后的菜地面积变为100平方米,底20米,你知道高是多少吗?

转化思想是一种重要的解决数学问题的方法,它是连接新旧知识的桥梁,合理利用,不仅可以掌握新知,还可以巩固旧知。希望同学们能把它作为我们的好朋友,帮助我们探索更多数学奥秘。

通过本节课的学习,同学们一定收获很多,下课以后,把自己的收获用日记记录下来,主动地到生活中去发现和解决一些关于平行四边形面积计算的问题。

设计意图:试图把学生带入更加广阔的学习空间。。

s=a×h。

平行四边形的面积教学设计与评析【第八篇】

3、在操作、观察、比较中,渗透转化的思想方法。

4、在探究活动中,体验到成功的快乐。

推导平行四边形面积公式,并能够运用平行四边形面积公式解决简单的实际问题。

课件平行四边形硬纸片剪刀透明方格纸。

一、情境激趣:

生:平行四边形的面积。师:这节课我们就来研究平行四边形的面积。(板书课题)。

二、实验探究:

1、猜想。

那么大家猜一猜平行四边形的面积可能与什么有关?(可能与边有关)只与它边的长度有关?大家看老师手中这个平行四边形,(演示)还可能与什么有关?(高)那么平行四边形的面积究竟与它的底和高有怎样的关系?下面就让我们一起来研究。

2、实验。

1)独立自主探究:

生:我用数格子的方法。

师:数格子时,不足一格的按一格算,把得到的数据填在表格里。

师:还有什么方法?

生:我用剪一剪、拼一拼的方法。

师:用剪拼方法上的同学请读一下操作提示。(一生读)下面你们就用自己喜欢的方法试一试。

2)小组内交流:

师:通过数格子或者剪拼的方法,哪位同学有收获了?把你的想法在小组内交流,小组长组织好。一会要向全班同学汇报你们小组的方法。

3)学生汇报:

第一个小组:(1)数格子(把表格带到前面说)。

(2)剪拼。

师:你们成功的把平行四边形转化成了长方形,这一长方形与原来的平行四边形有什么关系?(生:长方形的长等于平行四边形的底、宽等于平行四边形的高)你们小组转化的清楚,介绍的明白真了不起)。

是这样吗?师课件演示解说强调平移。

(多么巧妙的剪拼,我发现你们的思维很灵活啊。)(我只能说两个字了:“佩服!”)。

师:还有其他的方法吗?其他几个小组同学,通过动手操作你们得到了什么结论。一起说(师板书:平行四边形的面积=底*高)。

四、运用公式解决。

师:现在我们来算一下铺这块平行四边形草坪要用多少钱?

(生口算)。

五、拓展练习。

底15厘米,高11厘米。

(不仅准确计算出了结果,速度还很快,真不错。)。

2、开放题:这是一张全国地图,有一个省的地形很像平行四边形,山西省。山西南北大约590千米,东西大约310千米,你能估计一下它的土地面积吗?(东西能否再平些)。

(能在实际问题的解决中恰当运用公式,了不起)。

3、学校要建一个面积是12平方米的平行四边形花坛,请你帮学校设计一下,(要求底、高均为整米数)1)可以有几种方案?2)哪种方案更合理?(你们能从不同角度考虑,为学校选择更合理的方案,老师非常感谢大家)。

六、全课小结:

师:这节课,你是怎么学习的?你有哪些收获?

(我是用数方格的方法、我用平移这种方法把平行四边形转化成长方形再与平行四边形进行比较得出平行四边形的面积的师演示)你们很了不起,能想办法把平行四边形转化成我们以前学过的长方形来研究它的面积。我们这节课使用的这种方法,以后在学习其它图形面积时还会用到。今天的家庭作业是以《平行四边形的面积》为题写1篇数学日记,写清平行四边形的面积的推导过程,可以画、也可以剪贴。

课后反思。

课堂教学是一个动态生成的过程。因此,在教学时,我把关注的焦点放在学生身上,关注学生的情感体验,关注学生的自主建构,更关注学生真实的学习过程。从而适时地激发学生的情感,点燃学生的智慧,发挥学生的创造性。主要体现在以下几个方面:

1、适时渗透、领悟思想方法。

数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,经历问题解决的过程,了解数学学习的价值,增强数学的应用意识,获得数学的基本思想方法。我觉得,这节课学习的转化的数学思想方法将永远铭刻在学生头脑中,将在学生今后的学习中发挥更大的作用。

2、适时引导、主动建构知识。

学生学习数学知识的过程是主动建构的过程。因此,在教学中,我让学生象科学家一样经历大胆猜想、动手验证、得出结论的过程。先让学生根据已有的知识经验进行猜想:平行四边形的面积可能与什么有关?然后,给学生足够的探究时间和空间,“数”、“剪拼”都是学生的智慧,“数的过程”、“剪拼的过程”都是学生的思维过程。最后,让学生同伴互助去探究、去发现、去总结,给每个学生参与数学活动的机会,真正的实现了自主学习。

3、适时点拨、有效进行指导。

探究学习是把学生的“学”作为实施教学的基本点,而教师的“导”是实现学生“学”的根本保证。因此,在教学中我适时地对学生进行点拨、指导,做到“放得开、收得住”。如在自主探究过程中我发现,有的学生把平行四边形剪开后无法拼成长方形。于是,我进行了个别指导。引导学生思考:为什么只有沿高剪开才能拼成长方形?通过指导,使学生明白沿平行四边形的高剪开,是将平行四边形转化成长方形的关键。

课例点评。

这节课教师在教学时以图形内在联系为线索,以转化这条数学思想方法为主线,在操作、观察、比较活动中,通过孕伏、理解、强化的过程,让学生在获得知识的同时,领悟转化的数学思想方法。具体表现在以下几点:

1、在情境中蕴含知识,孕伏思想方法。

这节课情境的创设一方面紧紧地围绕所要探索的数学知识,另一方面又充分体现了知识之间的内在联系。创设了江滨公园铺草坪的情境图,分别呈现了一个长方形和一个平行四边形的草坪,并提供每平方米草坪的价格,引导学生根据信息提出问题。这一情境中既有长方形面积的计算,又有平行四边形面积的计算,把这些知识都融入一个具体的生活情境中,既唤起了学生已有的知识经验,又暗含了平行四边形的面积与长方形的面积有关。

2、在探究中体验知识,理解思想方法。

这节课沿着“提出猜想思考验证方法实践验证”这个过程进行。一是独立探究。让每个学生根据自己的体验,用自己的思维方式进行探究,并且提出了活动要求。一方面启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法;另一方面引导学生去探究所研究的图形与转化后的图形各部分之间有什么联系,从而找到平行四边形面积的计算方法。二是合作探究。在学生独立探究的基础上,让学生在小组内进行交流。通过交流,学生知道,任何形状的平行四边形都可以转化成长方形,这样,他们对图形变换的认识不再是个案的体会,而是对图形本质联系的体验。

3、在反思中提炼知识,强化思想方法。

教师在教学中注重引导学生对转化过程进行反思。第一次是在学生汇报交流之后,教师用课件呈现图形转化的过程引导学生进行反思,重点是理解转化的思想方法;第二次是课即将结束时,教师引导学生总结这节课学习内容时再次回放图形转化的过程,重点是强化转化的思想方法。并引导学生:“在今后学习其它平面图形的面积时,还要用到这种方法。”这样为学生以后学习三角形、梯形面积的计算进行了思想方法的延伸。

总之,这节课教学时有两条主线,一条是数学基础知识,另一条是数学思想方法,并且把领悟数学思想方法作为数学教学的要务,把掌握数学思想方法作为学生数学学习的最高境界。

相关推荐

热门文档

70 1937690