党员干部党性分析报告汇聚最新8篇
【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“党员干部党性分析报告汇聚最新8篇”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!
党员干部党性分析报告【第一篇】
本周听了满老师的一节数学课,这节课是满老师安排的一节乘法公式——平方差公式的新授课,这节课给我留下了深刻的影响。
教师讲课语言清晰,有较强的表达和应变能力,课堂教学基本功好。乘法公式的引入,使学生既复习了多项式的乘法运算,又形象直观地理解了乘法公式的内在实质。课堂教学中充分体现了以点拨为主的教学。对于公式的性能严格要求学生理解,课堂内的练习量、内容及安排上恰当好处,有基本运用公式,有变式运用公式,也有适当的加深应用,满足了不同层次的学生的学习。一点建议:
1、引入时,还可以安排得生动一点,可以先设疑,提出问题,让学生探讨,猜想,归纳,以激发学生更高的学习兴趣,或采用多题的多项式乘法运算,当学生感到有些“烦“时,让学生猜想这类运算能否运用简单的结论来得出,从而使学生感到今天要学的内容的重要性,这样学生的学习将更主动。
2、刚才说过语言清晰,但不够精炼,尤其在总结公式特征时,未能用简练的语言描述出特征,以致学生在完成例题和练习题的过程中,对在运用公式之前需要变型的题型,出错率较高。其实平方差公式的特征就是有两项相同,而另两项恰恰是互为相反数或项。相同项在前,相反项在后,结果才能用相同项的平方减去相反项的平方。
3、对于平方差公式的几何意义,敢于让学生大胆上黑板演示是好的,但过程繁琐,缺乏精炼,直观,不能让大部分学生弄懂。这时我们老师应该给出恰当准确的解释。
党员干部党性分析报告【第二篇】
通过教学我对本节课的反思如下:
1、本节课我从复习旧知入手,在教学设计时提供充分探索与交流的空间,使学生经历观察,猜测、推理、交流、等活动。对于平方差公式的教学要重视结果更要重视其发现过程,充分发挥其教育价值。不要回到传统的“讲公式、用公式、练公式、背公式”学生被动学习的'局面。我在教学时没有直接让学生推导平方差公式,而是设置了一个做一做,让学生通过计算四个多项式乘以多项式的题目,让学生通过运算并观察这几个算式及其结果,自己发现规律。目的是让学生经历观察、归纳、概括公式的全过程,以培养学生学习数学的一般能力,让学生体会发现的愉悦,激发学生学习数学的兴趣,感觉效果很好。
不足:在学生将4个多项式乘多项式做完评价后,应及时把他们归纳为某式的平方差的形式,以便学生顺理成章的猜测公式的结果。
2、学生刚接触这类乘法,我设计了两个问题(1)等号左边是几个因式的积,两个因式中的每一项有什么相同或不同之处。(2)等号右边两项有什么特点?便于学生发现总结。在这两个二项式中有一项(a)完全相同,另一项(b与—b)互为相反数。右边为这两个数的平方差即完全相同的项的平方减去符号相反的平方。公式中的a,b不仅可以表示具体的数字,还可以是单项式,多项式等代数式。提醒学生利用平方公式计算,首先观察是否符合公式的特点,这两个数分别是什么,其次要区别相同的项和相反的项,表示两数平方差时要加括号。平方差公式(a—b)(a+b)=a2—b2,它是特殊的整式的乘法,运用这一公式可以简捷地计算出符合公式的特征的多项式乘法的结果。我很细地给学生讲了以上特点,学生容易接受,课堂气氛活跃,收到了一定的效果。
3、本节课如能将平方差公式的几何意义简要的结合说明,更能体会数学中数形结合的特点,因时间关系放在下一课时。
4、学生错误主要是:(1)判断不出哪些项是公式中的a,哪些项是公式中的b;(2)平方时忽视系数的平方,如(2m)2=2m2。针对这一点在课堂教学中应着重对于共性的或思维方式方面的错误及时指正,以确保达到教学效果。平方差公式是乘法公式中一个重要的公式,形式虽然简单,学生往往学起来容易,真正掌握起来困难。部分学生只是死记硬背公式,不能完全理解其含义和具体应用。
总之,在以后的教学中我会更深入的专研教材,结合教学目标与要求,结合学生的实际特点,克服自己的弱点,尽量使数学课生动、自然、有趣。
党员干部党性分析报告【第三篇】
进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异.
教学重点和难点:公式的应用及推广.
1.(1)用较简单的代数式表示下图纸片的面积.
(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.
讲评要点:
沿hd、gd裁开均可,但一定要让学生在裁开之前知道。
hd=bc=gd=fe=a-b,
这样裁开后才能重新拼成一个矩形.希望推出公式:
a2-b2=(a+b)(a-b)。
2.(1)叙述平方差公式的数学表达式及文字表达式;。
(2)试比较公式的两种表达式在应用上的差异.
说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的`问题,否则容易对公式产生各种主观上的误解.
依照公式的文字表达式可写出下面两个正确的式子:
经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活.
3.判断正误:
(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)。
(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)。
(1)102×98;(2)(y+2)(y-2)(y2+4).
解:(1)102×98(2)(y+2)(y-2)(y2+4)。
=(100+2)(100-2)=(y2-4)(y2+4)。
=9996;。
(1)103×97;(2)(x+3)(x-3)(x2+9);。
(3)×;(4)(x-)(x2+)(x+).
3.请每位同学自编两道能运用平方差公式计算的题目.
例2填空:
思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?
(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)。
练习。
填空:
=()();。
=(2m-7)();。
=(a2+m2)()=(a2+m2)()();。
例3计算:
(1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).
解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)。
=[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]。
=(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2。
=m4-14m2+49-n2.
1.什么是平方差公式?一般两个二项式相乘的积应是几项式?
3.怎样判断一个多项式的乘法问题是否可以用平方差公式?
(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);。
(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).
(1)69×71;(2)53×47;(3)503×497;(4)40×39.
党员干部党性分析报告【第四篇】
《平方差公式》是一节公式定理课,是各位老师非常熟悉的一个课题,对大家更熟悉,我深深感到一种压力。但是,无论如何,“新”、“实”是我追求的目标。为此,我作了如下努力:
1、把数学问题“蕴藏”在游戏中。
导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,首先是一个智力抢答,学生通过抢答初步感知平方差公式,接下来,采用小组合作学习的方式,利用“四问”让学生进行试验操作,学生选择的字母有很多种,让它们都有其共性。由此,学生在探索中验证自己的猜想,同时也感受和认识知识的发生和发展的过程,得出(a+b)(a-b)=a2-b2.经过不断的尝试小组合作学习方式的教学,我发现也真正体会到,只要我们给学生创造一个自由活动的空间,学生便会还给我们一个意外的惊喜。
2、充分重视“自主、合作、探究”的教学方式的运用。
把探究的机会留给学生,让学生在动脑思考中构建知识,真正成为教学活动的主体。使他们在活动中进行规律的总结,并且通过交流练习、应用,深化了对规律的理解。学生对知识的掌握往往通过练习来达到目的。新授后要有针对性强的有效训练,让学生对所学知识建立初步的表象,以达到对知识的理解、掌握及应用,实现从感性认识到理性认识的升华。在此设计了三个层次的有效训练,让学生体会平方差公式的特点:第一层次是直接运用公式,第二层次是将式子进行适当变形后应用公式,第三个层次是平方差公式的灵活应用。通过做题学生归纳出平方差公式的运用技巧。
3、自置悬念,享受成功。
以四人小组为单位,各小组出两道具有平方差公式的结构特征的题目,看谁出得有水平。学生每人都设计了题目,任意叫了四位学生在黑板上写,经评价结果都对了。这种方法,不仅令人耳目一新,而且把学生引入不协调——探究——发现——解决问题的一个学习过程,使学生获得思维之趣,参与之乐,成功之悦。
4、切实落在实效上。
本节课在采用小组学习之后,为了让学生的巩固有效果,采用了学生上台讲解、作业实物投影的方式来进行,多种方式的选择,让学生暴露出自己的问题,然后通过生生互动、师生互动解决问题,实现问题及时处理,学习效果不错。
5、值得注意的是:
1、节奏的把握上。
这一节我觉得不是很顺,尤其在从几何角度解释平方差公式、例2⑵的其他计算方法等问题上,花了不少时间,节奏把握的不是很好。
2、充分发挥学生的主体地位上。
这节课上,我觉得学生的积极性不很高,回答问题没有激情,说明我背学生还不够,自己想象的比现实的好。
党员干部党性分析报告【第五篇】
我参与了学校组织的“同课异构”活动,授课内容是《乘法公式——平方差公式(一课时)》。
上学期末我恰好在任县二中参加了一次关于教材研究的会议,当时河南一位从教三十多年且参与教材编写的专家指出:关于概念、公式、法则的教学一般有六个环节:引入;形成;明确表述;辨析;巩固应用;归纳提升。新课标也要求我们在教学中不只是传授学生基本的知识技能,还要以培养学生的数学能力及合作探究的意识为目标。为此,我在设计本节课的教学环节时充分考虑学生的认知规律,并以培养学生的数学素质,了解运用数学思想方法,增强学生的合作探究意识为宗旨。
我的教学流程是按照“引入——猜想——证明——辨析——应用——归纳——检测”的顺序进行的,非常符合学生的认知规律。我觉得本节课比较好的方面有以下几点:
1.在利用图形面积证明平方差公式时,我没有采用教材上直接给出剪接方法再证明的过程,只给出了原图让学生们自己去探究不同的方法。事实证明,学生们不只拼出了书上的方法,还从对角线剪开拼出了梯形,平行四边形和长方形三种方法,思维一下就开阔了。这里我并没有为了证明而证明,也没有怕浪费时间匆匆而过,而是给学生留下了充足的思考和讨论时间,真正激发了学生的思维。
2.通过设置一个“找朋友”的小游戏来辨析公式,调动了学生的积极性,活跃了课堂气氛,因此,游戏过后学生对公式的结构特征也有了更深刻的了解。
3.共享收获环节,我采用的是制作微课的方式,形式比较新颖,从认识公式到知道公式的特征,再到感悟数形结合的数学思想,最后是感受到数学运算的一种简捷美,将本节课升华到了一个新的高度。
当然,本节课也有一些遗憾和不足之处。比如,由于紧张,在授课过程中遗漏了两点,通过播放幻灯片才慌忙补充上;在处理学生练习时,为了抓紧时间完成进度没有把学生的出错点讲透讲细;游戏环节参与学生有些少,应让更多的同学动起来;当堂检测的题目应该设置上分值和检测时间,让学生限时完成,然后可以根据学生得分了解本节课的学习效果,以便下节课再有针对性的进行讲解和练习查漏补缺。
通过这次“同课异构”活动,我感觉自己在教学环节设计、课件制作和使用、导学案的规范书写等各方面都有了提高,通过各位领导和老师的点评,我也有了更多的收获,相信可以为我今后的教学所用。
党员干部党性分析报告【第六篇】
平方差公式的教学已经是好几次了,旧教材总是定向于代数方法,新课程理念同几何意义探究,这也是对教学者的一次挑战,通过教学,我从中领会到它所蕴含的新的教学理念,新的教学方式和方法。
1、在教学设计时应提供充分探索与交流的空间,使学生进一步经历观察,实验、猜测、推理、交流、反思等活动,我在设计中让学生从计算花圃面积入手,要求学生找出不同的计算方法,学生欣然接受了挑战,通过交流,给出了两种方法,继而通过观察发现了面积的求法与乘法公式之间的吻合,激发了学生学习兴趣的同时也激活了学生的思维,所以这个探究过程是很有效的。
2、我知道培养学生数形结合思想方法和能力的重要性,通过几何意义说明平方差方式的探究过程,学生可以切实感受到两者之间的联系,学会一些探究的基本方法与思路,并体会到数学证明的灵巧间法与和谐美是很有必要的。
3、加强师生之间的活动也是必要的。在活动中,通过我的组织、引导和鼓励下,学生不断地思考和探究,并积极地进行交流,使活动有序进行,我始终以平等、欣赏、尊重的态度参与到学生活动中,营造出了一个和谐,宽松的教学环境。
党员干部党性分析报告【第七篇】
2.经历探索平方差公式的过程,认识“特殊”与“一般”的关系,了解“特殊到一般”的认识规律和数学发现方法,平方差公式第一课时教学反思。
重点:公式的理解与正确运用(考点:此公式很关键,一定要搞清楚特征,在以后的学习中还继续应用)。
难点:公式的理解与正确运用。
教法:自主探究和合作交流。
(1)(x+2)(x-2)(2)(1+2y)(1-2y)(3)(x+3y)(x-3y)。
=x2-22=12-(2y)2=x2-(3y)2。
学生分组讨论,交流,小组长回答问题。
师生共同总结归纳:
即两数和与两数差的积,等于它们的平方差。
(1)一组完全相同的项;
(2)一组互为相反数的项。
2.例题。
(1)(5+6x)(5-6x)(2)(-m+n)(-m-n)。
3.公式应用。
(1)(a+2)(a-2)(2)(-x+2y)(-x-3y)。
两个学生板演,其余学生在练习本上自己独立完成。
老师巡视,辅导学困生。
1.计算(1)(a+1)(a-1)(a2+1)(2)(a+b)(a-b)(a2+b2)。
师生共同分析:此题特征,两次利用平方差公式,教学反思《平方差公式第一课时教学反思》。
学生在练习本上独立完成,同桌互相检查。
2.(ab)(-ab)=?能用平方差公式吗?它的a和b分别是什么?
学生分组讨论交流,独立完成运算。
1、(ab+8)(ab-8)2、(5m-n)(-5m-n)。
3、(3x+4y-z)(3x-4y+z)4、(a+b)(a-b)(a2+b2)。
2、运用公式要注意的.问题:
(2)公式中的a、b可以代表什么?
一、检测导入。
二、例题展示。
三、拓展延伸。
四、达标堂测。
五、归纳小结。
即两数和与两数差的积,等于它们的平方差。
六、布置作业。
p21:习题、2。
党员干部党性分析报告【第八篇】
教学目标:
一、知识与技能。
1、参与探索平方差公式的过程,发展学生的推理能力2、会运用公式进行简单的乘法运算。
二、过程与方法。
1、经历探索过程,学会归纳推导出某种特种特定类型乘法并用简单的。
数学式子表达出,即给出公式。
2、在探索过程的教学中,培养学生观察、归纳的能力,发展学生的符。
号感和语言描述能力。
三、情感与态度。
以探索、归纳公式和简单运用公式这一数学情景,加深学生的体验,增加学习数学和使用的信心。培养学生由观察-发现-归纳-验证-使用这一数学方法的逐步形成.
教学重点:公式的简单运用。
教学难点:公式的推导。
教学方法:学生探索归纳与教师讲授结合。
课前准备:投影仪、幻灯片。