首页 > 学习资料 > 小学教案 >

五年级下册数学教案【热选4篇】

网友发表时间 1968307

【前言导读】此篇优秀教案“五年级下册数学教案【热选4篇】”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

五年级数学下册教案【第一篇】

教学目标:使同学加深理解真分数和假分数的意义;能够比较熟练的进行假分数与带分数,整数的互化。

教学重点:加深理解真分数和假分数的意义。

教学难点:综合运用所学知识。

教学课型:练习课

教具准备:课件

教学过程:

一,基本练习

1,判断下列分数哪些是真,假,带分数 [课件1]

2/3 8/5 13/24 35/2 23/18 156/7

2,把下面的假分数化成整数或带分数。[课件2]

36/18 12/5 24/4 48/15 64/16 50/29

3,用分数表示商,能化成带分数的化成带分数。[课件3]

15÷16 35÷18 27÷29 132÷35

4,把下面的分数依照从大到小的顺序排列起来。[课件4]

2 7/8 3 26/7 31/7 22/8 25/9

5,填数。[课件5]

3=( )/8 7=( )/1 6=( )/12=18/( )

9=( )/8 5=( )/7 4=4/( )=24/( )

6,把下面的带分数化成假分数。[课件6]

2 4 8 7 12

二,综合练习

1,P105 .4

2,P105 .5

弄清楚0~1;1~2;2~3……都被平均分成了四份。

3,P106 .8

(1)提问:题中是要把什么数化成什么数

(2)板述:把整数或带分数化成分数局部是假分数的带分数,必需从整数中或原带分数的`整数局部拿出1来进行改写。

4,P106 .11

提问:依题目要求,想想首先应确定哪个分数 为什么

三,全课总结,深化认识

今天我们学了什么知识 对于分数的知识你还想掌握些什么

四,家作

P106 .6,7,9,10

板书设计: 整数,假分数和带分数的互化练习

把整数或带分数化成分数局部是假分数的带分数,必需从整数中或原带分数的整数局部拿出1来进行改写。

3,分数的基本性质

五年级下册数学教案【第二篇】

教学目标:

1、知道容积的意义。

2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。

3、会计算物体的容积。

教学重点:

1、容积的概念。

2、容积与体积的关系。

教学难点:

容积与体积的关系。

教具:量筒和量杯、不同的饮料瓶、纸杯

教学过程:

一、复习检查:

说出长正方体体积计算公式。

二、准备:

把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是( )。

三、新授:

1、认识容积及容积单位:

(1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。

通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。

(2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。

(3)演示:体积单位与容积单位的关系。

说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。

①1升(L)=1000毫升(mL)

将1升 的水倒入1立方分米的容器里。

小结:1升(L)=1立方分米(dm3 )

②1升 = 1立方分米

1000毫升 1000立方厘米

1毫升(mL)=1立方厘米( cm3 )

练一练:

=( )mL 3500mL=( )L 15000cm3 =( )mL=( )L

=( )L

(4)小组活动:(1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?

(2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。

2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。

例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?

5×4×2 =40(立方分米) 40立方分米=40升

答:这个油箱可以装汽油40升。

做一做:一个正方体油箱,从里面量棱长是米。这个油箱装油有多少升?(订正)

小结:计算容积的步骤是什么?

3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?

出示一个西红柿,谁有办法计算它的体积?小组设计方案:

四、巩固练习:

1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深分米,它的容积是多少升?

2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?

3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?

4、提高题:p55、16

五、作业:

小结【第三篇】

通过今天这节课的学习,你学会了哪些研究图形的方法?

(观察、画图、测量、等多种方式)

五年级下册数学教案【第四篇】

教学内容

教科书第58页综合应用:设计长方体的包装方案。

教学目标

1、通过设计长方体的包装方案让学生认识到在体积相同的情况下,表面积与它的长、宽、高的相差程度有关的道理。

2、通过数学活动,运用所学知识,获得解决简单实际问题的经验、方法以及成功的体验。

3、培养学生的创新意识、策略意识、实践能力和空间观念。

教学重点

让学生体验到,在体积相等的情况下,要使表面积较小,长、宽、高应越接近的道理。

教具学具

为每组学生准备8个规格为16×8×4(单位:cm)的长方体纸学具盒,包装纸,直尺,透明胶,剪刀等。

教学过程

一、课前引入

师:观察自己桌上的学具盒,你发现这些学具盒有什么特点?

生:形状都是长方体,每个盒子的规格都是16×8×4(单位:cm),每组都有8个。

师:如果我们要将这8个长方体盒子包装成1盒,怎样包装更省包装纸呢?今天我们就运用所学知识解决这个问题。(板书课题)

二、设想与摆放

1、设想与摆放

设想:

(1)要将这些长方体的盒子包装起来,在包装的过程中要考虑哪些问题呢?

(2)要达到节省包装纸的目的,应该考虑哪些问题?学生思考后发表意见:要想节约包装纸,学具盒中间不能留空隙,表面要平整;摆法不同,所用的纸的大小不同;接头处尽量不要浪费等等。

(3)明确长方体盒子的摆法不同是造成包装纸用量大小的主要原因。

2、记录与计算

(1)你认为造成所需包装纸大小不同的主要原因是什么?所需包装纸的面积=所摆的长方体的表面积+接头部分用纸量(按2dm2计算)

生:摆成的大长方体的表面积越大,所用的包装纸越多,反之就少。

(2)究竟哪种摆法会更节约包装纸呢?

师:你们可以先将几个盒子摆一摆,量出所摆的长方体的长、宽、高,计算出摆成的不同长方体的表面积,从而算出所用包装纸的面积,并将数据和计算过程记录下来。

(3)小组合作:记录3种不同摆法下的包装纸用量,并选择一种用纸最少的方案。

为什么这种方案的用纸量会最少?在全班进行交流。

三、交流与比较

比一比谁的方案用纸少,并分析出用纸量不同的原因。

重点思考并讨论:

为什么同样是将8个学具盒打捆包装,表面积的大小会不相同?影响表面积大小的主要原因是什么?将分析的原因记录下来。

四、发现与思考

通过本次包装设计,你有什么发现?

1、物体重合的面积越大,表面积就越小,包装用的纸也就越少。

2、同样的体积下,长方体的表面积与它的长、宽、高的长度有关,长、宽、高的长度越接近,表面积就越小,当长、宽、高相等时,它的表面积最小。

五、知识拓展

师:解决用料省的问题在生活中有什么意义?联系实际谈自己的想法。

师:现在老师这里有20本数学书,想想看,怎样摆表面积最小?为什么?

六、课堂小结

这节课我们学习了什么?你有什么收获?说一说。

相关推荐

热门文档

16 1968307