首页 > 学习资料 > 小学教案 >

北师大版六年级上册《圆的面积》教学设计精编5篇

网友发表时间 566150

【前言导读】此篇优秀教案“北师大版六年级上册《圆的面积》教学设计精编5篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

《圆的面积》教学设计1

教学内容:圆的面积。

教学目标:

1. 通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2. 激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

3. 渗透转化的数学思想和极限思想。

教学重点:正确计算圆的面积。

教学难点:圆面积公式的推导。

教具准备:多媒体课件,圆片。

学具准备:把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。

教学设计:

一、复习旧知,导入新课

1. 前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?( 2πr)周长的一半怎样表示?(πr)

2. 课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)

3.课件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积) 谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。

3. 提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)

这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)

二、动手操作,探索新知

1. 回忆平行四边形、三角形、梯形面积计算公式推导过程。

(1)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式。)

(2)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?

那么同学们想一想,圆可能转化为什么平面图形来计算呢?

2. 推导圆面积的计算公式。

(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

(2)学生小组讨论。

看拼成的长方形与圆有什么联系?

学生汇报讨论结果。

(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)

(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。

生边答师边演示课件。

生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

因为长方形的面积=长×宽

所以圆的面积=周长的一半×半径

s=πr × r

s=πr2

师小结公式 s=πr2,让学生小组内说说圆的面积是怎样推导出来的?

(5)读公式并理解记忆。

(6)要求圆的面积必须知道什么?(半径)

3. 利用公式计算。

(1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)

(2)出示例3,学生尝试练习,反馈评价。

提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?

(3)完成做一做的第1、2题。

三、运用新知,解决问题

1. 求下面各圆的面积,只列式不计算。(cai课件出示)

2. 测量一个圆形实物的直径,计算它的周长及面积。

3. 课件演示:用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的最大面积即最大圆面积是多少?)

四、全课小结

这节课你自己运用了什么方法,学到了哪些知识?

五、布置作业

板书设计:

圆的面积

长方形的面积=长×宽

圆的面积=周长的一半×半径

s=πr×r

s=πr2

圆的面积教案2

教学内容:

教科书第107页练习十九第2-5题

教学目标:

1、通过练习,使学生进一步掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

2、进一步培养学生运用已有知识解决新问题的能力,体验圆形与生活的联系,感受平面图形的学习价值,提高数学学习兴趣和学好数学的自信心。

教学重点:

进一步掌握圆的面积公式,能正确计算圆的面积

教学难点:

能正确计算圆的面积,并能应用公式解决相关的简单实际问题

教学流程:

一、基本练习:

1、计算下面各圆的面积。r=4分米d=10厘米r=6米d=14米

2、引入谈话。师:今天我们继续学习圆的面积计算。

二、综合练习

1、完成练习十九第2题。要求:“铁饼投掷圈的面积比铅球投掷圈的面积大多少平方米?”首先要知道什么?根据直径怎样求出圆的面积?

2、完成练习十九第3题。根据圆的周长怎样求出圆的半径呢?

3、完成练习十九第4题。要求圆桌面面积必须知道什么?根据哪个求圆桌面的半径?

4、完成练习十九的第5题。师追问:圆的面积和周长是怎样算的?分别指的是什么:意义上有什么不同?

三、课堂总结

师:生活中有很多东西的形状是圆形的,有时需要计算它的面积或周长,谁能说说在实际运用中需要注意什么?

《圆的面积》教学设计3

教学目标:

1.使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

2.使学生进一步体会“转化”方法的价值,培养运用已学知识解决新问题的能力,发展空间观念和初步的推理能力。

3体会数学来自于生活实际的需要,感受数学与生活的联系,进一步产生对数学的好奇心和兴趣。

教学重点:

探索并掌握圆的面积公式,能正确计算圆的面积。

教学难点:

理解圆的面积公式的推导过程。

教学准备:

圆的面积公式的推导图。

一、回顾旧知,引入新知

1.师:四年级时,我们学习了求长方形和正方形的面积的方法,谁来说一说它们的面积的计算方法。

学生回答,教师予以肯定。

2.提问:圆的周长怎么计算?已知圆的周长,如何计算它的直径或半径?

3.引入:我们已经研究了圆的周长和直径、半径的计算方法,今天这节课我们来研究圆的面积是如何计算的。

(板书:圆的面积)

设计意图 通过复习,促进学生对周长和已知周长求直径或半径的理解,唤起学生求长方形和正方形面积的经验,为新课的学习做好准备。

二、合作交流,探究新知

1.教学例7。

(l)初步猜想:圆的面积可能与什么有关?说说你猜想的依据。

(2)圆的面积和半径或直径究竟有着怎样的关系呢?我们可以做一个实验。

(3)出示例7第一幅图。思考:图中正方形的边长与圆的半径有什么关系?图中正方形的面积和圆的半径有什么关系?

(4)学生独立完成填空。

(5)猜测:圆的面积大约是正方形面积的几倍?

学生回笞后,明确:圆的面积小于正方形面积的4倍,有可能是3倍多一些。

(6)出示例7后两幅图,按照同样的方法进行计算并填表。

正方形的面积/

圆的半径/

圆的面积/

圆面积大约是正方形面积的几倍

(精确到十分位)

2.交流归纳:观察上面的表格,你有什么发现?

通过交流,明确

(1)圆的面积是它的半径平方的3倍多一些。

(2)圆的面积可能是半径平方的兀倍。

3.教学例8。

(l)谈话:经过刚才的学习,我们已经知道圆的面积大约是它半径平方的3倍多一些,那么圆的面积究竟应该怎样来计算呢?

(2)操作体验:教师演示把圆平均分成16份,并拼成一个近似的平行四边形。

(3)提问:拼成的图形像什么图形?追问:为什么说它像一个平行四边形?

初步想象:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比有怎样的变化?

(4)进一步想象:如果将圆平均分成64份、128份,也用类似的方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什么图形?

(5)交流后,教师出示推导图。拼成的长方形与原来的圆有什么联系?在小组中讨论交流。

(6)在集体交流中借助图示小结:长方形的面积与圆的面积相等;长方形的宽是圆的半径;长方形的长是圆周长的一半。

(7)追问:如果圆的半径是r,长方形的长和宽应该怎样表示?根据长方形面积的计算方法,怎样来计算圆的面积?

(8)根据学生的回答,教师板书

长方形的面积一长×宽

圆的面积=

(9)追问:有了这样一个公式,知道圆的什么条件,就可以计算圆的面积了?

4.教学例9。

(1)出示例9,提问:有没有在生活中见过自动旋转*器?

(2)想象一下自动*器旋转一周后喷灌的地方是什么图形,*的最远的距离是什么意思。

(3)学生独立完成计算。

(4)集体交流。

5.教学例10。

(1)请同学读题,解读题意。

(2)找出题中的已知条件。

(3)分析解题过程。

(4)明确各个量之间的转化关系。

三、巩固练习,加深理解

1.完成“练一练”。

(1)学生独立解答。

(2)集体交流。

2.完成练习十五第1题。

(l)学生独立解答。

(2)集体交流。

3.完成练习十五第3题。

(1)学生列式后用计算器计算。

(2)集体交流。

4.完成练习十五第4题。

(1)学生独立解答。

(2)集体交流,指出:已知周长求面积,先要根据周长求出半径。

5.作业:练习十五第2、5题。

四、课堂小结

师:通过今天的学习,你有什么收获?

学生发言,教师点评。

圆的面积

长方形的面积=长×宽

圆的面积=

《圆的面积》教学设计4

教学目的

1.通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的 计算 公式;

2.能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。

教学重点 :圆面积计算

教学难点 :公式以及推导。

教学过程

一、复习并引入课题。

1.口算:2π ÷π ÷π

2.已知圆的半径是分米,它的周长是多少?

3.一个长方形的长是 米,宽是 4米,它的面积是多少?

4.说出平行四边形的面积公式是怎样推导出来的?

5.出示场景图:这个圆形草坪的占地面积是多少平方米,你们会计算吗?

课题引入:我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。

二、新课讲授

1.圆的面积的含义。

问题:同学们还记得面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)

2.圆的面积公式的推导。

问题:怎样求圆的面积呢?(学生提出办法,老师引导学生一起分析)

问题:我们用面积单位直接去度量显然是行不通的。那么我们怎么办呢?我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形。怎样分割呢?(教师出示场景图) 问题:这三位同学是怎样分割的?你知道他们的做法吗?(学生回答,老师给予肯定。)

教师拿出圆的面积教具进行演示:

先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。

强调:如果分的等份越多所拼的图形就越接近长方形。

问题:拼成的长方形的长和宽和圆的半径周长有什么关系呢?(学生回答,教师板书)

引导:这样这个长方形的面积就是圆的面积,你能求出这个圆的面积吗?

学生独立完成圆面积公式的推导:

总结:我们用S表示圆的面积,那么圆面积的大小就是: 再次强调:

(1)拼成的图形近似于什么图形?

(2)原来圆的面积与这个长方形的面积是否相等?

(3)长方形的长相当于圆的哪部分的长?

(4)长方形的宽是圆的哪部分?

(5)用S表示圆的面积,那么圆的面积可以写成:S=πr2

3.圆面积公式的应用。

师:我们回头看刚才的问题,圆形花坛的直径是 20m,这个花坛占地多少平方米?

学生读题,问:这里要求圆形花坛的面积,条件是否具备?我们该怎样列式呢?

(学生独立完成,教师巡视,对有困难的学生给予辅导。) 教师板演计算过程。

出示例2:光盘的银色部分是一个圆环,内圆半径是 2cm,外圆半径是cm,它的面积是多少?

问题:你能利用内圆好外圆的面积求出环形的面积吗?

学生读题,引导学生思考:要求圆环的面积我们可以怎么办?题目中给出的条件是否具备?怎样列式?(学生独立完成,老师选代表

回答问题,在黑板上演示计算方法,集体纠错。)

三、巩固练习。

1.根据下面所给的条件,求圆的面积。

半径2分米。

直径 10厘米。

(1)先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)

(2)强调书写格式,运算顺序与单位名称。

总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式S=πr2计算。

四、课堂小结

总结:在日常生活和工农业生产中经常需要求圆的面积,譬如说:蒙古包做成圆形的是因为可以化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以化地吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子为什么要做成圆形的,杯子的横截面为什么是圆形的?大家需要多看多想!

另外,我们在前面也学习了如何求圆的周长,需要注意的是:

(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。前者是二维的概念,而后者是一维的概念。

(2)求圆面积的公式是S=πr2,求圆周长的公式是C=πd或C=2πr;

(3)计算圆的面积用面积单位,计算圆的周长用长度单位。 板书

圆的面积

长方形的面积=长×宽

圆的面积=周长的一半×半径

S=πr×r

S=πr

《圆的面积》教学设计5

一、创设情境,引入新课。

1、课前谈话

师:中国古代有许多聪颖机灵的少年儿童,曹冲就是其中的一位。“曹冲称象”的故事你们熟悉吗?谁愿意给大家讲一讲。(指名一位学生介绍故事简介)

师:老师有个问题不明白,本来想知道大象的重量,曹冲为什么要称那些石头?

生:石头的重量和大象的重量相等。

师:你们说的这点很关键,必须保证石头和大象重量相等,这样称出的石头重量就是大象的重量。但是曹冲为什么不直接称大象呢?

生:因为大象太重,不能直接用秤称出来。

师:是啊,当时条件下,无法直接称出大象的重量,所以曹冲才想出用石头代替大象的方法。其实这也是我们数学学习中经常要用到的“转化”的方法,也就是当我们遇到新问题,不能直接解决时,可以把它转化成已有的知识和方法来解决的问题。

2、复习铺垫

师:现在请同学们回忆一下平行四边形的面积公式推导我们是把它转化成什么图形来计算的?

生:是把平行四边形转化成长方形来计算的。把平行四边形沿着它的高剪下来,平移到另一边,这样就拼成了一个长方形。

师:那么转化后的长方形的长与宽和平行四边形有什么关系?

生:长方形的长相当于平行四边形的底,宽相当于平行四边形的高。

师:棒极了!请同学们看大屏幕。(展示平行四边形转化成长方形的过程。)那大家还记不记得三角形、梯形它们是怎样转化的?(课件演示三角形、梯形转化成平行四边形的过程。)

师:通过这些图形的转化,你发现了什么?

生: 把图形转化成我们学过的图形。

师:嗯,不错,是运用了转化的方法,看来这是个不错的方法,帮了我们很多忙!

3、创设生活情境

师:现在请同学们看大屏幕。请大家认真观察这幅图,说说从图中你发现的数学知识。(多媒体展示教材第16页上主题图。)

生1:我发现了喷水头转动一周所走过的地方刚好是一个圆形。生2:喷射的水的距离相当于圆半径,也就是5米。生3:周长也就是喷水所走过的路线。生4:我补充一点,喷水头相当于这个圆的圆心。

师:大家的发现真多,那么你们说说这个圆形的面积指的是那部分?

生:被喷到水的草坪大小就是这个圆形的面积。

师:也就是说圆所围成的平面的大小是圆的面积。(课件出示)那发现了这么多数学知识,你想提什么问题吗?

生1:这个喷水头转动一周的周长是多少?生2:所喷洒的草坪面积是多少?也就是这个圆的面积是多少?

4、导入新课

师:我们已知道圆的面积是圆所围成平面的大小,那怎样计算圆的面积呢?这就是我们今天要学习的内容。(板书课题)

二、引导探究,获取新知。

1、估计圆的面积大小。(多媒体出示教材第16页“估一估”:半径是5米的圆的面积是多少?)师:请同学们认真看题目,与同桌说说你是如何估算的?

生1:我是这样估计的,这个圆的面积比圆外的大正方形的面积小,而比圆内的小正方形的面积大,大正方形的面积是100平方米,小正方形的面积是50平方米,那么这个圆的面积大约在50~100平方米之间。生2:我先算了四分之一个大正方形的面积是25平方米,而圆外角落里的面积约为5平方米,那么四分之一个圆的面积约是20平方米,整个圆的面积大约就是80平方米。

师:哦,你把范围缩小了,估得真不错!

生:我是这样估算的,我先算了圆外四个角落的面积约为20平方米,用大正方形的面积100平方米减去20平方米等于80平方米。所以我估计这个圆的面积也是80平方米。

师:同学们的估计很有道理,但是在实际生活中往往要有一个精确的结果。如果我们遇到更大的圆,比操场还大的,那还能用这种方法吗?有什么更好的方法吗?

生1:如果知道圆的面积计算公式就好了。生2:我想能不能把圆也转化成我们学过的图形来计算。

师:对了,最直接最方便的就是用圆的面积计算公式来算。刚才怀洋同学说得很好!想把圆转化成我们学过的图形来计算,真不赖!接下来我们一起来探索圆的面积计算公式是怎样的?

2、探索圆的面积计算公式

(1)动手操作

师:那么大家想把圆转化成什么图形呢?请拿出你们课前准备好的圆,和小组里的同学剪一剪,拼一拼。看看能拼成什么图形?

(2)指名汇报,实图展示。

师:通过刚才同学们的相互协作,相信你们一定取得了不小的成果。下面请小组派代表上台来展示一下所拼成的图形。

生1:我们组把圆平均分成8份,拼成了个类似平行四边形的图形。生2:我们组是把圆平均分成16份,也拼成了个类似平行四边形的

图形。

师:现在请同学们观察一下,剪成8份和16份所拼成的图形有什么变化?

生:分成16份的拼成的图形更像平行四边形。

(3)操作反思

师:你们有什么发现?

生:要想拼成的图形更接近于平行四边形,可以把圆分的份数再多一些。

师:也就是说如果我们继续分下去,分成32份、64份,那么拼成的图形就越接近于平行四边形。现在我们让电脑来帮忙继续分下去,看看是不是像我们想的那样。

生:我发现了当把圆分成64份时拼成的图形完全可以算是个长方形了。

师:你观察得真细致!那我们完全可以大胆猜测,如果我们继续分下去,拼成的图形就越接近于长方形了。通过剪拼,我们发现,圆曲线的边展开了,分的份数越多,展开来圆的边就越直。这就是化曲为直的方法。

师:你们还有别的拼法吗?

生1:我们小组把圆平均分成了16份,不过是把圆转化成了类似于三角形的图形。

生2:我们小组也是把圆平均分成了16份,拼成的是个近似于梯形的图形。

师:真不错!你们想到的方法真多!可以把圆转化成平行四边形、长方形,也可以转化成三角形、梯形。那我们今天就来探索把圆转化成平行四边形或长方形来推导它的面积公式。

(4)思考讨论,观察汇报(课件呈现问题并讨论)

师:圆与转化成的长方形或平行四边形之间有怎样的关系?

生:通过刚才的动手剪拼,我认为把圆转化成长方形或平行四边形,它的形状变了,面积没变。其它小组的同学也是一样的看法吗?

生1:我还想补充一点,它的周长也变了。生2:圆的面积和长方形的面积相等。

生3:拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。(多指名几位同学回答,让展示图的同学上台拿着图边指边说, 最后师课件演示)

师:你们能否用长方形的面积公式推导出圆的面积公式,并说说你的理由。

生:因为长方形的长相当于圆的周长的一半,宽相当于半径,根据长方形的面积等于长乘宽,我可以得出,圆的面积等于圆周长的一半乘半径。

师:你们听明白了吗?再请几位同学来说说。

生:把圆转化成长方形,面积是相等的,长方形的长相当于圆周长的一半,宽相当于半径,所以圆的面积等于圆周长的一半乘半径。(圆周长的一半用字母表示,面积也用字母表示)

师:说得真好!老师也听明白了。(教师根据学生汇报有序地整理板书。)

板书: 长方形的面积 = 长 × 宽

↓ ↓ ↓

圆的面积 = 圆周长的一半 × 半径

s = πr(c/2) × r

= πr2

(5)小结

师: 现在要求圆的面积是不是很简单了,知道什么条件就可以求出? 生:半径。

师:那我们就利用这个公式回过头来算算刚才这个喷水头转动一周所喷洒的圆形草地的面积是多少?谁愿意上台来做做?(指名板演,讲评时说清算法。重点指出求圆面积只需要知道半径即可。)现在请大家来看看这段话,你能把它补充完整吗?(课件呈现问题和答案)

今天学习了《圆的面积》,我知道了把一个圆平均分成若干份,可以拼成一个近似的长方形,长方形的长相当于圆的( ),宽相当于圆的( ),因为长方形的面积=长×宽,所以圆的面积公式表示为( )。

三、练习应用,巩固新知。

师:现在,你们想不想利用刚刚学到的知识解决一些实际问题呢?有信心吗?

1“试一试”第一题指名板演,讲评时说清算法。2“试一试”第二、三题

师:观察一下,这题和第1题有什么不一样的?谁愿意上台来做?

(集体讲评,请板演的同学说说如何算的?)

生1:图中只给出了直径,要求圆的面积首先得知道半径,所以我先求出圆的半径等于分米,再根据圆的面积等于圆周率乘半径的平方求出圆的面积。生2:第三题已知周长,我也是先求半径。根据圆周长等于圆周率乘半径乘2,算出半径等于周长除以圆周率再除以2等于1米,再根据圆面积等于圆周率乘半径的平方等于乘1的平方求出面积。

四、全课总结。

师:短短的40分钟很快就过去了,通过这节课的学习,你有什么收获?有什么不明白的地方?

生1:我知道了圆的面积公式。生2:我知道了怎样求圆的面积。生3:我懂得了要求圆的面积需要先知道它的半径。生4:原来是把圆转化成长方形或平行四边形推出它的面积公式的。生5:我的收获是当我们碰到不能解决的问题时,可以把它转化成学过的知识来解决。

师:大家的收获真不少!我们不仅学会了求圆的面积,而且运用转化的方法推导出了圆的面积公式,这是同学们的第一个了不起;另外,我们能从生活中发现数学问题并应用所学知识解决问题,这是第二个了不起!老师希望你们继续留心观察我们的生活,从生活中发现数学问题并想办法取解决它。

五、布置作业:教材p19练一练第1~5题。

相关推荐

热门文档

16 566150