首页 > 学习资料 > 教学设计 >

《角的度量》教学设计(最新5篇)

网友发表时间 370008

【路引】由阿拉题库网美丽的网友为您整理分享的“《角的度量》教学设计(最新5篇)”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

《角的度量》【第一篇】

角 的 度 量

一、教学目标 :

1、认识量角器,学会使用量角器量角;

2、进一步知道角的大小与两条边开叉的大小有关,与两条边所画的长短无关;

3、知道用不同的方法来量角,培养学生的创造性思维和创新能力。

二、教学重点、难点:

重点:学会灵活合理地用量角器量角。

难点:通过学生观察、交流来认识量角器;探索、发现归纳出量角的方法。

三、教具准备:多媒体课件及设备

学具准备:活动角、三角板2块

四、教学过程 :

一、实物引新,初步认识角

1、  出示一个角,问:请你说说角各部分的名称?

⑵线段的两端都无限延长就得到一条直线。

(     )

(    )

(    )

师指着顶点:这个点叫做角的什么?

师指着两条边:这两条射线分别是角的什么?

2           师:非常正确!(课件:出示红领巾)这是同学们经常戴在脖子上的红领巾。红领巾上有几个角?(3个)角1和角2哪个大,哪个角小?你是怎么知道的?

3           师:大家说得真好,请同学们拿出三角板来比较一下三角板上角1和角2的大小?

师:你又是怎么知道的?

小结:比较的大小,我们用了看一看,比一比的方法

4           出示两种面,问:种面A与种面B,时钟与分钟所成的角哪个更大?哪个更小呢?用以上观察和比较的方法能不能比较。比较起来比较困难,有没有更好的方法呢?大家想一想

生:用量角器量

师:今天我们就来学习

(板书课题:)

二。  探究新知

(一)认识量角器

1.       师:要学好,西想知道哪些问题?大家来说说。

A要用什么工具来度量

B怎样度量角

2.       师:请同学们带着这两个问题自学课本122页。开始到123页前二段。请同学们在小组内交流自学的收获。请小组派代表汇报。

归纳板书:角的计量单位是“度”,用符号“0”表示。1度记作1度

度量角的步骤:1.把量角器放在角的上面

2.量角器的中心和角的顶点重合

3. 0度刻度线和角的一条边重合

4.角的另一条边所对的量角器上的刻度就是这个角的度数

3.       师:大家说得挺好的,为了同学们更清楚,请看电脑演示。

(二)

1.       师:我们认识了量角器知道怎样度量角,你会量吗?大家拿出一号,学习卡来试试吧。(学生试着度量角)1,2组度量第一个角,3,4组度量第二个角。

2.       师:你们真行!现在请大家拿出二号学习卡度量第一个角。你们是怎样度量的?(学生答)第二个角的多少度。请一位同学上来度量?

师:刚才我看到有的同学在度量第二个角时是把学习卡转动了,如果这个角在黑板上,你能转动黑板吗?(不能)那该怎么办?

3.       现在大家都学会了度量角。我们可以通过度量两个角的度数来比较它们的大小。(电脑演示量角)

师:前面同学们不能准确比较钟面A和钟面B,时钟与分针的大小。现在我们学习了就可以解决这个问题。(电脑演示度量钟面的角)

(三)寻找规律

师:从钟面的比较我们可以看出角的大小与角的两边画出的长短没有关系,那角的大小与什么有关系呢?请同学们利用准备好的工具,验证你的结论。

得出:角的大小要看两条边叉开的大小,叉开的越大,角越大。

(四)练一练

师:现在请同学们度量课本123页的三个角的大小。

(五)全课总结:

《角的度量》【第二篇】

教学建议

一、知识结构

二、重点、难点分析

本节教学的重点是角度计算中的进位制问题、互余与互补的概念;难点是互余与互补概念的理解和应用。熟练掌握的相关知识可以为进一步研究相交线、平行线打下基础。

1.度、分、秒的互换:如果一个角比1°还小,那么怎样度量它的大小?为了更精密地度量角。我们把1°的角60等份,每一份叫做1分的角,1分记作1';又把1'的角60等份,每一份叫做1秒的角,1秒记作1''.即1°=60',1'=60''.这表明角的度、分、秒是60进制的,这和计量时间的时、分、秒是一样的。例如:∠α的度数是32度48分51秒。记作∠α=32°48'51''.除法过程中,要注意度、分、秒是六十进制的,要把度的余数乘以60化为分,继续除得精确到分,把分的余数乘以60化为秒,继续除得精确到秒的近似值。

2.若两个角的和是一个直角,这两个角叫做互为余角,若两个角的和是一个平角,这两个角叫做互为补角。理解这两个概念,要把握以下几点:(1)必须具备两个角;(2)两个角的和是一个定值:互余两角的和是 ,互补两角的和是 ;(3)与两个角的位置无关,只考虑两角间的数量关系。

3.结合小学已经学过的概念,说明小于平角的角可以按照大小分成三类。分类的思想对于科学研究比较重要。要按照某种特征进行分类,例如按照大小、按照轻重,等等。分类要不重不漏。就是说,在把一群事物分类时,要使其中的每一事物都归入某一类,不能无类可归(不漏),并且只归入某一类,不能既归入这一类,又归入另一类或另几类(不重).这里只是初步渗透分类的思想,以后还要遇到分类,如三角形的分类。

三、教法建议

1.本节的教学内容中,对分类的数学思想加强了要求,由于分类的思想不是第一次出现,因此,可以简单进行小结,使得学生能够加深认识。使学生自己能对一些事物进行分类。

2.在角的内容中,对角的进位制要加以重视,因为这是与十进制不同的进制,以后由于不同的需要还会遇到不同的进制,在这里讲清楚后,以后再遇到,就会感到自然了。同时对于60这个数的特点进行分析,使学生对角的一些运算能很灵活。

3.角的单位中的大、小单位的互化比课本的要求要高,应该尽可能的掌握。

4.本节在对学生活动的安排上,时间可多一些,教师也可以根据情况酌情安排。在安排学生自己出题时,应多加鼓励,尽量用学生自己出的题。目的是调动学生学习的积极性。

教学设计示例

一、素质教育目标

(一)知识教学点

1.理解互为余角、互为补角的定义。

2.掌握有关补角和余角的性质。

3.应用以上知识点解决有关计算和简单推理问题。

(二)能力训练点

1.通过例3的讲解,培养学生用代数方法解几何问题的思路。

2.通过有关余角、补角性质的推导,初步培养学生逻辑思维和推理能力。

(三)德育渗透点

通过互余、互补角性质的推导,说明事物之间具有普遍的联系性。

(四)美育渗透点

通过互余、互补的演示,使学全体会几何图形的动态美,通过性质的推导,使学生初步领略几何逻辑推理的严密美。

二、学法引导

1.教师教法:引导发现、尝试指导相结合。

2.学生学法:学生积极参与,动手动脑,与主动发现相结合;

三、重点·难点·疑点及解决办法

(一)重点

互为余角、互为补角的角的概念及有关余角、补角的性质。

(二)难点

有关余角和有关补角性质的推导。

(三)疑点

互余、互补的两个角图形的位置关系。

(四)解决办法

对重点、难点,应巧妙引导学生去发现,通过动手、动脑解决问题。

对疑点,由学生思考并讨论,互相叙述“为什么”并相互纠正,同时,由教师进行逻辑点拨。

四、课时安排

1课时

五、教具学具准备

投影仪或电脑、三角板、自制胶片。

六、师生互动活动设计

1.通过教师演示,学生活动的方法创设情境,引出课题。

2.通过学生讨论,归纳总结出互余、互补的定义,并通过两个练习对定义加以巩固。

3.通过教师出示问题,学生思考并相互叙述,最后教师加以点拨的方法完成第一个性质的逻辑推理,其他性质由教师出示问题,学生模仿完成,最后学生做反馈练习。

4.通过教师提问、学生回答完成图表的方法进行本节课的小结。

七、教学步骤

(一)明确目标

正确理解互余、互补的定义并掌握其性质,并能运用进行简单的计算和推理。

(二)整体感知

通过教师演示和指导,学生动手动脑参与,顺利地使学生理解和掌握互余、互补的定义和性质,并通过对图形的识别和性质的理解,完成一些简单的计算和推理。

(三)教学过程

创设情境,引入课题

师:上节课,我们学习了度量,认识了平角和直角,请同学们在练习本上画出一个平角和一个直角,并标明其度数。

学生画图形的同时,投影显示以下图形,见图1及图2:

图1 图2

教师演示:在以上两个图形的基础上,利用电脑(或投影),分别过两个角的顶点作活动射线 ,任意改变射线位置,让学生观察,如下图1及图2:

图1 图2

学生活动:过自己所画两个角的顶点,任意作射线 ,同时观察老师演示。

提出问题:射线 把平角 ,直角 分别分成了几个角?它们的度数关系如何?

(学生容易答出:分成两个角, , .)

教师演示:把射线 固定一个位置不动,然后把两个图形中的角保持大小不变,拉开,如图1及图2(或拉开更远些,多变换几种位置).

图1 图2

提出问题: 与 的和还是 吗? 与 的和还是 吗?

学生活动:观察教师演示过程中的图形变换,同桌可相互讨论,回答教师提出的问题。

教法说明 与 , 与 位置变换,前提是其大小不变。改变位置关系目的是:避免提出互补、互余角的概念后,学生误认为只有有公共顶点且和为 , 的两个角才是互补、互余的角。

根据学生回答,教师肯定结论:

不论 、 、 、 的位置关系如何变化,只要大小不变, 与 的和永远是平角, 与 的和永远是直角。像这样具有特殊关系的角,我们分别叫它们互为补角和互为余角。这就是我们要学习的一节中又一新知识。(板书课题)

[板书]

教法说明  注重学生的参与意识,要让学生手脑并动,通过不断演示,学生观察,教师逐步提出问题,让学生养成自己发现问题,并没法解决问题的良好习惯。

探究新知

1.互为余角、互为补角的定义

提出问题:你能根据前面老师的演示和说明,叙述一下具有什么关系的两个角叫互为余角和互为补角吗?

学生活动:同桌相互讨论,互相纠正和补充,找学生口述。

教法说明通过学生亲自动手画图,观察老师的演示,对互余、互补角概念的理解,可以说已经水到渠成。教师不必包办代替,要让学生自己总结归纳,以训练其归纳总结及口头表达能力。

教师根据学生回答,给予肯定后给出答案:

[板书]

互为余角:如果两个角的和是一个直角,那么这两个角叫互为余角。其中一个角叫做另一个角的余角。

直为补角:如果两个角的和是一个平角,那么这两个角叫互为补角。其中一个角叫做另一个角的补角。

2.提出问题,理解定义。(投影显示)

(1)以上定义中的“互为”是什么意思?

(2)若 ,那么 互为补角吗?

(3)互为余角、互为补角的两个角是否一定有公共顶点?

学生讨论以上三个问题。

教法说明对定义的理解,提出的三个问题很关键,让学生讨论发表自己的见解,比教师单纯强调“注意”效果要好得多,同时也培养学生全面分析、考虑问题的能力。

通过学生回答,教师对以上三个问题给予肯定或否定。

反馈练习:投影显示

1.若 与 互补,则 ,若 与 互余,

2. 角的余角为 ,补角为 , 的余角为 .补角为 .

3.如图1: 是直线 上一点, 是 的平分线,

图1

① 的补角是____________

② 的余角是____________

③ 的补角是____________

教法说明第l、2两题可由学生抢答,这两题是为以下例3做铺垫的。第1题实质上也是把定义的文字语言转化成几何语言,强调反之也成立。通过第3题要培养学生的识图能力。

2.有关互余、互补角的性质

师:通过以上练习,我们对互余、互补角的概念有了较深刻的理解,下面我们提出一个新问题,看你们能否解决。

投影出示:

例4  与 互补, 与 互补,若 ,那么 和 相等吗?为什么?

教法说明学生思考并讨论,同桌互相叙述“为什么”讲相互纠正。有时学生间的交流比师生对话效果会更好。

找学生试述“为什么”,估计逻辑性不会太强,教师可加以点拨:解决几何问题往往要从已知入手,联想出结论:如由 与 互补你想到什么结论?( ) 与 互补呢?( ).因为要比较的是 与 的大小,以上两式可表示为: , .已知中 ,则 一定等于 .

教师边引导学生叙述边板书出较规范的格式:

[板书]

∵ 与 互补,∴ 即 .

∵ 与 互补,∴ 即 .

∵ ,∴ .

教法说明此问题中的“为什么”实际上是几何中的推理问题,要有严密的逻辑性。学生第一次接触,因此,“放”可以,而且必须“收”。教师引导由已知产生联想,一环紧扣一环,写出推理过程,渗透“∵  ∴”的书写格式。

提出问题:通过以上题目,你是否发现了两个等角的补角间有怎样的关系?你能试着总结吗?

教法说明由学生发现性质,并归纳总结,培养学生由具体题日抽象出几何命题的能力和语言表达能力。学会由具体到抽象考虑问题的方法。

学生活动:同桌讨论,并互相叙述总结规律。

教师对学生回答进行纠正、整理后板书,并给出符号语言,强调此性质的应用。

[板书]同角或等角的补角相等。∵ , ,∴ .

提出问题: 与 互余, 与 互余,若 ,那么 等于 吗?为什么?你由此问题又能得出什么结论?

学生活动:教师不给任何提示的情况下,在练习本上仿照例4的格式,写出“为什么”及得出的结论。

教师找同学回答后板书。

[板书]同角或等角的余角相等。∵ , ,∴ .

师:有关余角和补角的性质很有用,以后遇到有同角(或等角)的补角就可以根据这个性质,知道它们都相等。

反馈练习:投影显示

图1

1.见图1,若 与 互余, 与 互余,

则______=______根据是:________

图2

2.见图2,若 与 互补, 与 互补,

则______=_______根据是:_________

图3

3.如图3, 是直线 上的一点, 平分 , ,则

教法说明第1、2两题主要强调互余、互补角性质的应用,设计成活动胶片(或电脑课件)把图中的角多变换几个位置。第2题中当拼成两相交线时为下一步学习对顶角相等做准备。第3题可以找 、 的余角有几个,把题再拓宽些。

(四)总结、扩展

以提问的形式列出下表

互余的角

互补的角

数量关系

对应图形

性质

同角或等角的余角相等

同角或等角的补角相等

思考题(投影出示)

1.锐角的余角一定是锐角吗?

2.一个锐角和一个钝角一定互为补角吗?

3.一个角的补角比这个角的余角大多少度?

4.相等且互补的两个角各是多少度?

5.一个角的补角一定比这个角大吗?

教法说明小结后由学生看书,让学生提出问题,学生提出以上问题,则发动同学们讨论,没提出以上问题教师再提出,由学生讨论。

八、布置作业

课本第38页练习第1、2题。

作业 答案

1.较大角是 ,比萨斜塔倾斜了 .

2. 的补角是 ,余角是 .

九、板书设计

1.定义

如果两个角的和是一个平角,那么这两个角互为补角。

如果两个角的和是一个直角,那么这两个角互为余角。

2.性质

同角或等角的补角相等。

同角或等角的余角相等。

例3  解:_______________

_________________________

_________________________

________________

(练习板演)______________

__________________________

__________________________

_________________________

练习

解:_______________

___________________

___________________

___________________

___________________

___________________

__________________

热门文章青少年思想道德建设

当前我国作文教学改革的新趋势

古诗三首(墨梅 竹石 石灰吟)

第一场雪

Unit 2 Look at me第五课时

植物妈妈有办法

威尼斯的小艇

等比数列的前n项和

相关文章·角的比较

·角

·线段的比较与画法

·下学期 射线、线段

·直线

·一元一次方程的应用

·一元一次方程和它的解法

·方程和它的解

中“课件

《角的度量》【第三篇】

教学建议

一、知识结构

二、重点、难点分析

本节教学的重点是角度计算中的进位制问题、互余与互补的概念;难点是互余与互补概念的理解和应用。熟练掌握的相关知识可以为进一步研究相交线、平行线打下基础。

1.度、分、秒的互换:如果一个角比1°还小,那么怎样度量它的大小?为了更精密地度量角。我们把1°的角60等份,每一份叫做1分的角,1分记作1';又把1'的角60等份,每一份叫做1秒的角,1秒记作1''.即1°=60',1'=60''.这表明角的度、分、秒是60进制的,这和计量时间的时、分、秒是一样的。例如:∠α的度数是32度48分51秒。记作∠α=32°48'51''.除法过程中,要注意度、分、秒是六十进制的,要把度的余数乘以60化为分,继续除得精确到分,把分的余数乘以60化为秒,继续除得精确到秒的近似值。

2.若两个角的和是一个直角,这两个角叫做互为余角,若两个角的和是一个平角,这两个角叫做互为补角。理解这两个概念,要把握以下几点:(1)必须具备两个角;(2)两个角的和是一个定值:互余两角的和是 ,互补两角的和是 ;(3)与两个角的位置无关,只考虑两角间的数量关系。

3.结合小学已经学过的概念,说明小于平角的角可以按照大小分成三类。分类的思想对于科学研究比较重要。要按照某种特征进行分类,例如按照大小、按照轻重,等等。分类要不重不漏。就是说,在把一群事物分类时,要使其中的每一事物都归入某一类,不能无类可归(不漏),并且只归入某一类,不能既归入这一类,又归入另一类或另几类(不重).这里只是初步渗透分类的思想,以后还要遇到分类,如三角形的分类。

三、教法建议

1.本节的教学内容中,对分类的数学思想加强了要求,由于分类的思想不是第一次出现,因此,可以简单进行小结,使得学生能够加深认识。使学生自己能对一些事物进行分类。

2.在角的内容中,对角的进位制要加以重视,因为这是与十进制不同的进制,以后由于不同的需要还会遇到不同的进制,在这里讲清楚后,以后再遇到,就会感到自然了。同时对于60这个数的特点进行分析,使学生对角的一些运算能很灵活。

3.角的单位中的大、小单位的互化比课本的要求要高,应该尽可能的掌握。

4.本节在对学生活动的安排上,时间可多一些,教师也可以根据情况酌情安排。在安排学生自己出题时,应多加鼓励,尽量用学生自己出的题。目的是调动学生学习的积极性。

教学设计示例

一、素质教育目标

(一)知识教学点

1.理解互为余角、互为补角的定义。

2.掌握有关补角和余角的性质。

3.应用以上知识点解决有关计算和简单推理问题。

(二)能力训练点

1.通过例3的讲解,培养学生用代数方法解几何问题的思路。

2.通过有关余角、补角性质的推导,初步培养学生逻辑思维和推理能力。

(三)德育渗透点

通过互余、互补角性质的推导,说明事物之间具有普遍的联系性。

(四)美育渗透点

通过互余、互补的演示,使学全体会几何图形的动态美,通过性质的推导,使学生初步领略几何逻辑推理的严密美。

二、学法引导

1.教师教法:引导发现、尝试指导相结合。

2.学生学法:学生积极参与,动手动脑,与主动发现相结合;

三、重点·难点·疑点及解决办法

(一)重点

互为余角、互为补角的角的概念及有关余角、补角的性质。

(二)难点

有关余角和有关补角性质的推导。

(三)疑点

互余、互补的两个角图形的位置关系。

(四)解决办法

对重点、难点,应巧妙引导学生去发现,通过动手、动脑解决问题。

对疑点,由学生思考并讨论,互相叙述“为什么”并相互纠正,同时,由教师进行逻辑点拨。

四、课时安排

1课时

五、教具学具准备

投影仪或电脑、三角板、自制胶片。

六、师生互动活动设计

1.通过教师演示,学生活动的方法创设情境,引出课题。

2.通过学生讨论,归纳总结出互余、互补的定义,并通过两个练习对定义加以巩固。

3.通过教师出示问题,学生思考并相互叙述,最后教师加以点拨的方法完成第一个性质的逻辑推理,其他性质由教师出示问题,学生模仿完成,最后学生做反馈练习。

4.通过教师提问、学生回答完成图表的方法进行本节课的小结。

七、教学步骤

(一)明确目标

正确理解互余、互补的定义并掌握其性质,并能运用进行简单的计算和推理。

(二)整体感知

通过教师演示和指导,学生动手动脑参与,顺利地使学生理解和掌握互余、互补的定义和性质,并通过对图形的识别和性质的理解,完成一些简单的计算和推理。

(三)教学过程

创设情境,引入课题

师:上节课,我们学习了度量,认识了平角和直角,请同学们在练习本上画出一个平角和一个直角,并标明其度数。

学生画图形的同时,投影显示以下图形,见图1及图2:

图1 图2

教师演示:在以上两个图形的基础上,利用电脑(或投影),分别过两个角的顶点作活动射线 ,任意改变射线位置,让学生观察,如下图1及图2:

图1 图2

学生活动:过自己所画两个角的顶点,任意作射线 ,同时观察老师演示。

提出问题:射线 把平角 ,直角 分别分成了几个角?它们的度数关系如何?

(学生容易答出:分成两个角, , .)

教师演示:把射线 固定一个位置不动,然后把两个图形中的角保持大小不变,拉开,如图1及图2(或拉开更远些,多变换几种位置).

图1 图2

提出问题: 与 的和还是 吗? 与 的和还是 吗?

学生活动:观察教师演示过程中的图形变换,同桌可相互讨论,回答教师提出的问题。

教法说明 与 , 与 位置变换,前提是其大小不变。改变位置关系目的是:避免提出互补、互余角的概念后,学生误认为只有有公共顶点且和为 , 的两个角才是互补、互余的角。

根据学生回答,教师肯定结论:

不论 、 、 、 的位置关系如何变化,只要大小不变, 与 的和永远是平角, 与 的和永远是直角。像这样具有特殊关系的角,我们分别叫它们互为补角和互为余角。这就是我们要学习的一节中又一新知识。(板书课题)

[板书]

教法说明  注重学生的参与意识,要让学生手脑并动,通过不断演示,学生观察,教师逐步提出问题,让学生养成自己发现问题,并没法解决问题的良好习惯。

探究新知

1.互为余角、互为补角的定义

提出问题:你能根据前面老师的演示和说明,叙述一下具有什么关系的两个角叫互为余角和互为补角吗?

学生活动:同桌相互讨论,互相纠正和补充,找学生口述。

教法说明通过学生亲自动手画图,观察老师的演示,对互余、互补角概念的理解,可以说已经水到渠成。教师不必包办代替,要让学生自己总结归纳,以训练其归纳总结及口头表达能力。

教师根据学生回答,给予肯定后给出答案:

[板书]

互为余角:如果两个角的和是一个直角,那么这两个角叫互为余角。其中一个角叫做另一个角的余角。

直为补角:如果两个角的和是一个平角,那么这两个角叫互为补角。其中一个角叫做另一个角的补角。

2.提出问题,理解定义。(投影显示)

(1)以上定义中的“互为”是什么意思?

(2)若 ,那么 互为补角吗?

(3)互为余角、互为补角的两个角是否一定有公共顶点?

学生讨论以上三个问题。

教法说明对定义的理解,提出的三个问题很关键,让学生讨论发表自己的见解,比教师单纯强调“注意”效果要好得多,同时也培养学生全面分析、考虑问题的能力。

通过学生回答,教师对以上三个问题给予肯定或否定。

反馈练习:投影显示

1.若 与 互补,则 ,若 与 互余,

2. 角的余角为 ,补角为 , 的余角为 .补角为 .

3.如图1: 是直线 上一点, 是 的平分线,

图1

① 的补角是____________

② 的余角是____________

③ 的补角是____________

教法说明第l、2两题可由学生抢答,这两题是为以下例3做铺垫的。第1题实质上也是把定义的文字语言转化成几何语言,强调反之也成立。通过第3题要培养学生的识图能力。

2.有关互余、互补角的性质

师:通过以上练习,我们对互余、互补角的概念有了较深刻的理解,下面我们提出一个新问题,看你们能否解决。

投影出示:

例4  与 互补, 与 互补,若 ,那么 和 相等吗?为什么?

教法说明学生思考并讨论,同桌互相叙述“为什么”讲相互纠正。有时学生间的交流比师生对话效果会更好。

找学生试述“为什么”,估计逻辑性不会太强,教师可加以点拨:解决几何问题往往要从已知入手,联想出结论:如由 与 互补你想到什么结论?( ) 与 互补呢?( ).因为要比较的是 与 的大小,以上两式可表示为: , .已知中 ,则 一定等于 .

教师边引导学生叙述边板书出较规范的格式:

[板书]

∵ 与 互补,∴ 即 .

∵ 与 互补,∴ 即 .

∵ ,∴ .

教法说明此问题中的“为什么”实际上是几何中的推理问题,要有严密的逻辑性。学生第一次接触,因此,“放”可以,而且必须“收”。教师引导由已知产生联想,一环紧扣一环,写出推理过程,渗透“∵  ∴”的书写格式。

提出问题:通过以上题目,你是否发现了两个等角的补角间有怎样的关系?你能试着总结吗?

教法说明由学生发现性质,并归纳总结,培养学生由具体题日抽象出几何命题的能力和语言表达能力。学会由具体到抽象考虑问题的方法。

学生活动:同桌讨论,并互相叙述总结规律。

教师对学生回答进行纠正、整理后板书,并给出符号语言,强调此性质的应用。

[板书]同角或等角的补角相等。∵ , ,∴ .

提出问题: 与 互余, 与 互余,若 ,那么 等于 吗?为什么?你由此问题又能得出什么结论?

学生活动:教师不给任何提示的情况下,在练习本上仿照例4的格式,写出“为什么”及得出的结论。

教师找同学回答后板书。

[板书]同角或等角的余角相等。∵ , ,∴ .

师:有关余角和补角的性质很有用,以后遇到有同角(或等角)的补角就可以根据这个性质,知道它们都相等。

反馈练习:投影显示

图1

1.见图1,若 与 互余, 与 互余,

则______=______根据是:________

图2

2.见图2,若 与 互补, 与 互补,

则______=_______根据是:_________

图3

3.如图3, 是直线 上的一点, 平分 , ,则

教法说明第1、2两题主要强调互余、互补角性质的应用,设计成活动胶片(或电脑课件)把图中的角多变换几个位置。第2题中当拼成两相交线时为下一步学习对顶角相等做准备。第3题可以找 、 的余角有几个,把题再拓宽些。

(四)总结、扩展

以提问的形式列出下表

互余的角

互补的角

数量关系

对应图形

性质

同角或等角的余角相等

同角或等角的补角相等

思考题(投影出示)

1.锐角的余角一定是锐角吗?

2.一个锐角和一个钝角一定互为补角吗?

3.一个角的补角比这个角的余角大多少度?

4.相等且互补的两个角各是多少度?

5.一个角的补角一定比这个角大吗?

教法说明小结后由学生看书,让学生提出问题,学生提出以上问题,则发动同学们讨论,没提出以上问题教师再提出,由学生讨论。

八、布置作业

课本第38页练习第1、2题。

作业 答案

1.较大角是 ,比萨斜塔倾斜了 .

2. 的补角是 ,余角是 .

九、板书设计

1.定义

如果两个角的和是一个平角,那么这两个角互为补角。

如果两个角的和是一个直角,那么这两个角互为余角。

2.性质

同角或等角的补角相等。

同角或等角的余角相等。

例3  解:_______________

_________________________

_________________________

________________

(练习板演)______________

__________________________

__________________________

_________________________

练习

解:_______________

___________________

___________________

___________________

___________________

___________________

__________________

热门文章中“课件

《角的度量》【第四篇】

1.教学设计学科名称 北师大版课标小学数学四年级第七册二线与角角的度量

2.所在班级情况,学生特点分析

教学资源丰富,学生经过四年多的学习,已初步养成良好的学习习惯。基础知识扎实,具有一定的自主学习、合作探究及解决问题的意识和能力。二、三年级已学过可能性大小的相关知识,本节课是在此基础上继续学习可能性的大小。

3.教学内容分析 :数学源于生活,又高于生活,许多数学知识与生活有密切联系,可以在现实世界中找到“原型”,但也有相当一部分是找不到“原型”的,如直线的概念就比较抽象,教学时很难借助实际例子帮助学生理解其含义。因为从严格意义上来说,数学中所说的“点”是没有大小的,“线”是没有粗细的,“面”是没有厚薄的。因此,教学时必须注意数学学科本身的特点,适时和适度地联系学生的生活经验。

4.教学目标1注重数学概念之间的内在联系,从直观过渡到抽象。如线段、射线、直线的关系,角和射线的关系,各种角之间的关系等,注重概念之间的联系。

另外,认识射线和直线,由射线引出角的定义,都是借助直观过渡到抽象的,如手电筒的光线,探照灯等。2.在动手操作中发现数学规律。

5.教学难点分析:注意数学与生活的联系,适度关注学生的生活经验。

6.教学课时:l两课时

7.教学过程

名称。以及角的表示法和读法。

2.角的度量。

(1)角的度量。

首先,介绍量角器和角的计量单位(度)。教材由学生比较角的大小比较自然的引出角的度量,通过出示了量角器的直观图和1度的直观图帮助学生认识量角器,并且形成1度的正确表象。接下来,小组讨论如何测量角的度数。教材上两个角的方向不同,让学生自己想办法来测量。

(2)例1。

通过测量角度来比较,角的大小和什么有关,验证以前建立的结论。角的大小和角两边张开的大小有关,和角两边的长度无关。这在二年级上册的练习中学生就已经有所体会了。

3.角的分类。

(1)例2。

通过生活中的实例两把折扇的实物图,让学生直观地理解平角、周角的概念,同时注意区别它们与直线、射线的关系。

(2)例3。

首先,用量化的角度来判断,并说明直角、平角、周角的关系。接下来,让学生利用平角和周角来求出两相交直线所成四个角的大小。与前面的练习相呼应。

4.画角。

例4教学用量角器画角。教学时,可以直接给出画角的步骤,也可以让学生自主探索。

五、教学建议

1.恰当把握目标。

本套教材把角的认识分成三段编排,每段都有自己的教学任务,同时前后也有连贯性,教学时,老师要把握好这一部分的教学要求。

2.注意数学与生活的联系,适度关注学生的生活经验。

数学源于生活,又高于生活,许多数学知识与生活有密切联系,可以在现实世界中找到“原型”,但也有相当一部分是找不到“原型”的,如直线的概念就比较抽象,教学时很难借助实际例子帮助学生理解其含义。因为从严格意义上来说,数学中所说的 “点”是没有大小的,“线”是没有粗细的,“面”是没有厚薄的。因此,教学时必须注意数学学科本身的特点,适时和适度地联系学生的生活经验。

⒊ 加强动手操作,给学生提供自主探索的空间。

经过第一学段的学习,学生对角已有了一定的知识基础,教学时,应充分考虑学生的这些知识基础,在加强操作活动的同时,尽可能给学生提供自主探索的时间和空间。因此,课本上的许多结论如“经过一点可以画无数条直线和射线”、“经过两点只能画一条直线”、以及量角的步骤等都没有出示文字说明,而是在练习中安排了不少“量一量”、“画一画”、“折一折”、“拼一拼”这样的操作活动,目的就是让学生在这些活动中进一步加深对角的认识,并形成画角和量角的技能,初步培养学生的作图能力,同时让学生经历和体验知识的形成过程。

⒋ 努力挖掘教材中蕴含的数学思想方法。

教材中如“经过一点可以画无数条直线和射线”、“经过两点只能画一条直线”等这里就可以渗透极限的思想,猜想、验证的方法等,老师在教学时要注意这些数学思想方法的渗透,有意识的加以引导。

布局合理、结构完美的课堂教学,除了讲究“主旋律”的引人入胜外,还得讲究“序曲”的扣人心弦,“终曲”的回味无穷,这样才能进入前后浑然一体的美妙境界,奏出和谐、动听的“乐章”。“序曲”和“终曲”何以如此重要呢?因为,好的“序曲” 具有巨大的吸引力和凝聚力,它能把学生散乱的精力一下子集中到本课的内容上来,为成功进行本课教学奠定学生在心理、认知、情感等方面的良好基础;而精彩的 “终曲”,可使课堂高潮迭起,让学生产生继续探索的兴趣和积极的情感,从而在情感的驱使下进行新的认知活动。那么,如何奏出这动听的“序曲”和“终曲” 呢?有位青年教师执教“角的度量”一课时其作了有益的探索和尝试,现介绍这“两曲”,与大家共赏。

一、“序曲”扣人心弦

师:同学们,炮兵某部正在进行一场军事演习,我们一起来看(多媒体出示下列画面)。

(炮兵在指挥员“预备──—放”的指挥声中向目标发起了进攻,在前后做了两次射击并随即做了两次角度调整后,第三次终于击中了目标。)

师:炮兵调整了大炮的什么,最后击中了目标?

生:调整了大炮的角度。

师:看来,角度在军事上有着非常重要的作用。其实,角度不仅在军事上有用,在航天、航海甚至体育等好多领域都需要,那么,精确的度数怎么得来呢?这就是今天这节课我们要学习的内容。(板书课题:角的度量)

[评析:“如果教师不想法使学生产生情绪高昂和智力振奋的内心状态,就急于传授知识,不动情感的脑力劳动就会带来疲倦,没有欢欣鼓舞的心情,没有学习兴趣,学习就会成为学生的负担。”这是原苏联教育家苏霍姆林斯基的论述。但问题是,“角的度量”如何在“传授”新知前使学生“情绪高昂和智力振奋”呢?这确实又是长期以来困扰教师的一道“难题”,难能可贵的是,以上片段中,教师独辟蹊径,巧妙地将创设情境的“触角”延伸到了“军事演习”领域,学生在隆隆的炮火声中,在大炮角度的动态调整中、在最终击中目标的欣喜与激动中,不仅明确了精确角度的重要,更产生了一种欲罢不能和急切学习的心理状态。而有了这种强烈的诱惑力,学生就能自然地进入到新知的探究中。此外,本片段中的情境设计既能围绕知识关键点、重点展开,却又点到为止,彰显了情境设计直接为教学服务的目的,其简单直白、经济高效的特征显而易见。]

二、“终曲”回味无穷

阿凡提智斗恶财主(多媒体课件分步出示下列情境图)。

画面音:阿凡提辛辛苦苦在财主家干了一年,大年三十这一天,他冒着风雪到财主家领工钱,贪心的财主想刁难阿凡提,就说:“阿凡提,听说你很聪明,这是我祖传的一块玉佩,可惜缺了一个角,你得给我量出这个缺角的度数,量对了,我给你工钱,要是量不出来,哼哼,我就扣你一半的工钱!”

师:财主真够刁的,竟然叫阿凡提去量断角的度数,能量出断角的度数吗?

(思考片刻,学生中出现两种不同的声音。)

生:不能。因为这个角断了,连顶点都没了,当然量不出来了。

生:能(一时却又想不出方法)。

生:能。我们只要量出另外两个角的度数,然后用180°去减,就能知道这个断角的度数了。

师:真够聪明的!

生:不对,这样不算。因为财主是要阿凡提量出而不是想办法算出这个角的度数,他刁就刁在这个地方!

师:也有道理啊!

生:那可怎么办呢?

师:碰到难题了!难在哪儿呢?

生:(众生)没有角怎么量啊!

师:对呀,要量角先得有角啊,再想想,老师相信大家一定能帮阿凡提想出办法来。

生:有了!我们只要把这块玉佩断了角的两条边延长并相交,就能找出这个角,并量出角的度数。

师:终于和聪明的阿凡提想到一块去了。(多媒体展示过程),这样,阿凡提就可以领到工钱了。但是,狡猾的财主并没有善罢甘休,他又想出了一个新花招,我们来听一听。

画面音(财主):第一次不算,你得用我的量角器,量出这个角的度数,这次量对了,我就给你工钱。

师:财主想让阿凡提量哪个角呢?(教师提示学生看不知何时画在黑板上的一个小角)用这把量角器(教师手里的木制教具量角器)。(“这怎么量?”“真是太狡猾了!”此时教室里已是一片愤愤不平声。而且,学生初始的努力也并不顺利,一个学生上去“一试身手”,但折腾了半天终因角被量角器的边盖住而变得“无计可施”。)

师:想办法啊!要不然拿不到工钱啦!

生:有了,只要把这个小角的两条边延长,一直延长到用这把量角器能量出这个角的度数为止。

师:你们和阿凡提一样聪明!正是用这种办法,阿凡提再一次战胜了狡猾的财主,最终取回了自己的工钱!

8.课堂练习

9.作业安排

10. 附录(教学资料及资源)

11. 自我问答

人的思维只有被浓厚的情感渗透时,才能得到力量,引起积极的注意、记忆和思考。”数学课程标准指出:“数学思考、解决问题、情感与态度的发展离不开知识与技能的学习。同时,知识与技能的学习必须以有利于其他目标的实现为前提”。上例中,教师创设故事情境,巧妙地将练习的内容蕴涵于情境中,这不仅使原先枯燥、机械的练习不见了踪影,更使练习的过程成为学生帮助阿凡提与狡猾的财主“斗智”的过程(最终结果自然是“正义战胜邪恶”);使练习的过程成为一次次分析问题、解决问题的过程(这其中虽然也暴露了学生的各种疑问、困难、障碍和矛盾)。这样做,其最终结果是学生的知识被激活、思维被激发、情感被激励,精彩表现不断出现。课程标准提及的“三维”目标得到了很好的体现和落实。

我对教材进行了加工,把教材中统计路口车辆经过的情况换成了统计选票,使材料更接近学生的生活实际,也更具有可操作性。我先快速读选票来引发学生的认知冲突,使学生在问题和矛盾中亲历学习过程,这样的改变学生的体验更充分、感悟更深刻。教学过程也在师生、生生互动中自然而然地推进。当学生发现光靠一人的记录有困难时,就想到了分工合作,让他们感悟到了同伴合作共同解决问题的需要。通过组间交流,学生知道了收集数据可以用多种方法,但画“正”字的方法误差最小,具有自身的优越性。通过活动,不但使学生自觉地完成了方法择优,而且在不知不觉中感悟到了:当统计对象动态、无序呈现、稍纵即逝时用画“正”字的方法来统计最好。

这样处理就极大地激发起学生的学习兴趣,使学生对本来枯燥的数学产生一种亲切感和真实感。很好地调动了学生的学习积极性,沟通了数学与生活的联系。

应对即时生成 调整教学

荷兰著名学者弗赖登塔尔曾这样说过:教师的任务是为学生提供自由广阔的天地,听任各种不同思维、不同方法自由发展,决不可对内容作任何限制,更不应对其发现作任何预置的“圈套”。叶澜教授曾说:“课堂应是向求知方向挺进的旅程,随时都有可能发现意外的通道和美丽的图景,而不是一切都必须遵循固定的路线而没有激qing的行程。”因此,我们教师要树立动态生成的正确观念,把握有利时机,运用有效策略充分将课堂中的随机事件转化为有效的教学素材。如今,教师除了在备课时要研究教材、研究学生、充分考虑多种教学预设应对外,在教学中,还必须根据学生的思维状况和课堂即时生状况,随时作出充满教育智慧的调整。

案例《角的度量》

我完全依照教材中的内容进行设计教学方案。在教学“角的度量”时,我让学生自主认识量角器的各部分组成后,就组织学生使出准备好的练习纸,让学生尝试测量一个锐角的大小。之后,在交流反馈后出现了下面一幕:

生1:我是这样量的,先用量角器上的0刻度线与角的一条边重合,再看另一条边对的是60度的刻度线,那么这个角就是60度;

生2:我和量法不一样,我用量角器上的20度刻度线与角的一条边重合,再看另一条边对着80度的刻度线,那么这个角就是80度。

师:刚才两位同学的量法可行吗?你们有什么意见和补充?

生3:我认为生2的量法是不对的。因为书上说,用量角器量角的度数时,应该先用零刻度线与角的一条边重合,生2没用到零刻度线,所以是不对的。

生4:生2的量法是不对的,而且量出的度数也是不对的。

生5:我认为生2的量法也是可行的,只是这个角应该是60度,我是这样算的,80—20=60度。

师:谁听明白了,你赞成他的想法吗?

(注:如果在课堂中没有出现生2的做法,我会在练习中提供这样的素材,再通过

比较研究发现书本上的量法比较简便。)

在师生的交流中,学生惊喜地发现生2的测量方法也是可行的,但比起生1来说较复杂些。在这样的比较过程中,学生渐渐地明白了书本上的量法要简便。在这一过程中教师在课堂教学中时刻关注学生的思维过程,顺应学生的思路走,而不再是教师让腹稿牵着走。

课堂是自动生成的,这就注定课堂上总会或多或少出现一些“意外”。教师只有蹲下身来,以孩子的视角去看待问题,想孩子所想,吃深、吃透学情,才有可能最大限度地将课堂上的“意外”纳入到自己的教学预设中去,随时调整教学,打开广阔的学习空间。

分析教学对象 开放教学

建构主义理论认为,学习不是由教师向学生传递知识,而是学生主动建构自己知识的过程。学生并不是空着脑袋走进教室的,在日常生活中,在以往的学习中,他们或多或少已经积累了丰富的经验。而且,有些问题即使他们还没有接触过,没有现成的经验,但当问题一旦呈现在他们面前,他们往往可以基于相关的经验,依靠已有的认知能力,形成对问题的解释。因此,我认为课堂教学不能无视学生的原有经验,即使是一年级的学生,他们在学习新知识之前,已有了一定的生活经验和实践积累。

《角的度量》【第五篇】

《角的度量》教学设计

教学目标

1、知识与技能:

(1)认识量角器、角的度量单位,会在量角器上找出大小不同的角,并知道它的度数,会用量角器量角

(2)通过一些操作活动,培养学生的动手操作能力。

(3)通过联系生活,使学生理解量角的意义。

2、过程与方法

通过观察、操作学习活动,形成度量角的技能,同时使学生经历和体验知识的形成过程。

3、情感态度和价值观:

在学习过程中,感受数学与生活密切联系,激发学生学习数学的兴趣。

教学重点:认识量角器,会用量角器量角。

教学难点:认识量角器,会用量角器量角。

教学用具:活动角、量角器、三角板、多媒体课件。

教学过程

一、创设情境,引入课题。

(教师演示学具)

1、同学们,看看老师手里拿的是什么?(活动角学具)谁能告诉老师这个角的各部分名称

2、这两个角哪一个大些呢?

(根据学生的回答板书课题:角的度量)

二、认识量角器。(演示课件)

1、认识量角器的中心、0刻度线、内外圈刻度。

(1)师:量角用什么工具?

师:请大家仔细观察自己的量角器,认真地研究研究,看看你有什么发现。

(2)小组合作研究量角器。

(3)学生汇报研究的结果。注意这里要尽量让学生说出自己的想法,有的问题还可以让学生来解答。

教师根据学生的回答,要说明哪里是量角器的中心,哪里是0度刻度线及内刻度和外刻度,量角器是把半圆平均分成180份等。根据回答作出下列板书:中心、0度刻度线、内刻度和外刻度。(如果学生答不到量角器是把半圆平均分成180份,教师可提下列问题启发:根据量角器上的刻度和数,你想一想量角器是把半圆平均分成多少份的?)

2、建立1°角的观念。

(1)让学生把量角器上平均分成180份中的每一份所对的角用细丝游戏棒(在一种塑料扫帚上剪下的)在课桌上摆一摆大约有多大。

(2)与学生共同讨论,得出同学们刚才摆出的这个角就是1°角。

3、认识几度角。

(1)在量角器上出示下列角,问学生这是多少度的角,为什么?

(在量角器上画出20°的角,其中每一个刻度都用虚线标出,便于学生讲出为什么20°的道理,图略)

(2)在量角器上出示60°、120°角(把角画在印在纸上的量角器上)。和学生一起讨论为什么同一个刻度,一个表示60°,另一个却表示120°?从而让学生谈谈在量角器上读角时要注意什么?突破读内外圈刻度易错这一难点。

(3) 量角器上找出30°、100°、135°的角。

三、尝试量角,探求量角的方法

1、出示下列角(p37),问:这个角你能读出它的度数吗?(因为没有标角的度数,所以学生读不出)。接着问:要读出这个角的度数该怎么办?指导学生实际操作,按步骤去量角。

第一步,使量角器的中心点与角的顶点重合;

第二步,使量角器的零刻度线与角一条边重合;

第三步,看角的另一条边所对量角器上的刻度,就是这个角的度数。教师边说明边演示,巡视加以指导。

2、量出下列角的度数(p39、3)。(突出第二个角的边不够长可以延长边来量,要问学生为什么可以延长边来量的道理)。

四、比较角的大小。

用量角器量下面的两组角,比较一下它们的大小。(p38例1)

讨论:角的大小和什么有关?

总结结论:角的大小与角的两边画出的长短没有关系。角的大小要看两条边叉开的大小,叉开得越大,角越大。

五、巩固练习:

1、p38“做一做”

2、p39、4先估算每个角的度数,然后验证。

3、p40、6用一副三角板拼出下面度数的角。

75°  105°  120°  135°   150°    180°

4、钟面角的认识(拓展知识,让学生熟记每一时刻中的角度)

六、课堂小结

问:今天我们学习了什么内容?你有什么收获?

七、课后作业p40、5、7

阿拉题库 · 学习办公更轻松!

22 370008