首页 > 学习资料 > 教学设计 >

《鸡兔同笼》教学设计4篇

网友发表时间 1211285

【导言】此例“《鸡兔同笼》教学设计4篇”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

鸡兔同笼教案【第一篇】

鸡兔同笼问题最早出现在我国古代的一本数学书《孙子算经》中,原题是:“今有雉、兔同笼,上有三十五头,下有九十四足。问雉、兔各几何?”该书给出了一种典型的解法,即:兔数=腿数÷2—头数(94÷2—35=12),鸡数=头数—兔数(35—12=23);也就是教材中介绍的抬脚法。鸡兔同笼问题,二、三年级的学生奥数学过,五、六年级的学生教材中安排在数学广角中学,到了初中还要学。我也曾不禁想过:鸡兔同笼问题怎么有这么大的魅力,让不同年龄层次的孩子们都争相去学,其中蕴含了怎样的数学思想呢?可今天自己就要上这一课了,于是就带着问题研究本课教材,收集有关本课的材料,认真设计并实践了本课。真是功夫不负有心人,我参考了几位专家的教法,结合自己班孩子的实际情况设计的教案在实践中得到良好的教学实效,现反思如下:

一、关注每位孩子的成长是成功的前提

鸡兔同笼问题既然作为奥数的内容,那它的思维含量必然很高,然而鸡兔同笼问题又作为六年级数学广角的内容,势必让每个孩子对这类问题都应有各自能够理解的方式去掌握,而不能一味地追求最优化的方式。课堂上从列表的枚举法入手,接着利用尝试法再到假设的算术法,不仅从思维上层层递进,更关注每个孩子的学习起点和成长体验,是本课收到良好教学效果的前提。

二、关注课堂的互动、生成是取得良好效果的基础

课堂是师生双边的交换活动,是教师与学生交流的活动。课上,教师与孩子们交流不耐烦,很是专制的强调哪些事可以做,哪些事不可以做,会限制学生的能动性和思维的发展,从课堂上来看,我与学生的交流是非常融洽的。从课前谈话,故事到入、铺垫,到鸡兔同笼原型的展开,再到生活实例的引申,我们的交流都是在无负担的、轻松的氛围中进行的,在无形中,孩子们放开了思绪,生成了很多意想不到的、让人回味的结论和问题。再则,从心理学的角度我们可以知道:正面的强化作用,对学生的知识、能力、情感和思维都有积极的作用。因此,在评价方面我采取学生回答精彩时,及时有效的正面评价;学生回答不上来或回答不够具体时,友好的提醒先想一想或听听同学们的意见,再交流……点滴的心语交流,让孩子们没有负担的学习,同时发展性的评价,更促使孩子们高度关注学习的内容,做到了良性的情绪循环,促进了教学的有效性展开。正是如此,自然形成了融洽的课堂,达到良好的教学效果。

三、关注数学思想的传承是达成目标的保障

解决鸡兔同笼问题的过程中蕴含丰富的数学思想,有绘图的数形结合思想、有算术计算的假设思想,有方程代数的数学建模思想等。本人思考如果一节课把所有的思想内涵都包容进去,平均分配学习时间和关注度,必定导致课堂内容学习的拥堵和孩子们学习的不知所措。因此,我选取了适合孩子们认知的方式的,首先用一个诙谐幽默的鸡兔玩游戏的故事引入,让学生弄清鸡兔各有什么特点?4只鸡和3只兔一共有多少条腿?鸡学兔走路,地上有几条腿?多的几条腿是谁的?兔学鸡走路,地上有几条腿?少的几条腿是谁的?根据学生已获得的知识,注意引导学生围绕自己的发现,进行深层次地思考,重点渗透以列表的一一对应思想和算术解决的假设模型等数学思想,并通过猜想、验证,使学生应用所发现的数学知识进行判断,很快掌握了用假设法解鸡兔同笼问题的方法,并在学习方法的过程中,体会数学思想。

本课虽然没有华丽的修饰,但已引起学生的共鸣、激发了他们的学习愿望,完全吃透所学内容,思维得到锻炼。

鸡兔同笼教学设计理念 鸡兔同笼教学设计人教版【第二篇】

数学广角《鸡兔同笼》教学设计

中卫五小:张芙蓉

教学目标:

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、在解决“鸡兔同笼”的活动中,尝试通过列表枚举、假设、画图等方法解决鸡兔同笼问题。锻炼学生的思维能力,体验假设、化繁为简等数学思想方法。

3、在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

教学过程:

一、课前交流:游戏 说说你是怎样算出来的。

二、解读问题。

师:看张老师给大家带来了什么问题呢?(媒体出示课题:鸡兔同笼)师: “鸡兔同笼”是什么意思啊? 生:就是把鸡和兔关在一个笼子里。

师:不错,大约1500年前,我国古代数学数学名著《孙子算经》中记载了这样一个题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?如果用现在话说就是:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94条腿。问鸡和兔各有多少只?

师:这道题的数较大,解决起来较困难,在数学中有一种化繁为简的方法,能帮助我们更容易的解决问题,那老师就把这道题化繁为简。请看大屏幕题目:谁愿意给大家读一读,其他同学认真听,仔细想,这道题的已知条件和问题分别是什么?

生1:鸡和兔共有8个头,26条腿。师:除此之外还有什么信息啊?

生2:还有1只鸡有2条腿,1只兔有4条腿。三.解决问题

(一)列表法 1.猜测列举。

师:有了这些信息咱们先来猜一猜笼子里可能会有几只鸡几只兔,怎么猜?随便猜吗?我猜鸡10只,兔20只,行不行? 生:不行。师:为什么不行?

生:鸡和兔的只数加起来应该是8才行。

师:说的对。那您先猜一个。鸡多少只?兔多少只? 生:1只鸡,7只兔。生2:4只鸡,4只兔。生3:2只鸡,6只兔。

师:要知道猜的对不对,需要怎么样? 生:验证。师:怎样验证?

生:根据猜测的鸡和兔的只数算算腿的条数,看是不是等于26。

师:说的太好了!您听明白了吗?

要知道谁猜的对,我们共同来检验一下,指名检验。通过我们共同的检验,几只鸡,几只兔?

小结:根据鸡和兔的总只数,列举出一些可能,然后根据题目的条件进行适当地调整,总能找到一种情况符合题目要求。我们把这种方法叫做列表法。列表的方法可以解决鸡兔同笼问题,并且一目了然,但当总只数成千上万的时候,就显得太麻烦了,所以列表法不适合数据大的鸡兔同笼问题。

(二)假设法。

1、师:今天,老师教给你们一种解决鸡兔同 笼的新方法,你们想学吗? 生:想。

师:但是老师有个要求,在学习的过程中你一定要仔细听,并且要动脑子想才行,能做到吗?

2、播放微课。

师:刚才的视频中,老师教给大家了两种方法,一种是画图法,就是用圆圈表示头数,少了加上,多了去掉。当数字较大时,这种方法也是不可用的。另一种方法是把所有的鸡看成兔,也可以把所有的兔看成鸡,这种方法叫作假设法,假设法才是解决鸡兔同笼最基本的方法,也是我们今天学习的重点。请看大屏幕我们一起来回顾一下。

师:我们发现如果假设全是鸡,先算出的是兔的只数。如果假设全是兔,先算出的是鸡的只数。为了大家能够记得更牢,老师把这个过程编了一个顺口溜,“鸡兔同笼并不难,设鸡算出兔,设兔算出鸡,设鸡设兔全由你,正确计算你第一”

过度:那现在我们用学到的假设法来解决一下《孙子算经》中的问题吧。学生解答并集体讲评。

3、想知道古人是怎样解决鸡兔同笼问题的吗?打开书认真阅读105页的小资料。

三、延伸、应用 1.课件出示“做一做1”

鸡兔同笼问题传到日本时就变成了“龟鹤问题”,你认为“龟鹤问题”与“鸡兔同笼”有什么相似之处?课件出示(龟相当于兔,鹤相当于鸡)展示学生作业,并抽生说说思路。

四、课后总结:

同学们,我们今天解决了一个什么问题?用到了什么方法?其实解决鸡兔同笼问题,我们还有别的方法,如方程法。下面老师要送给同学们一句话:“没有大胆的猜想,就做不出伟大的发现。——牛顿”希望同学们都能做个爱思考,善于发现的孩子。

五、板书设计:

鸡兔同笼教学设计【第三篇】

教学目标:

1.了解鸡兔同笼问题,感受古代数学问题的趣味性。

2.尝试用不同的方法解决鸡兔同笼问题,使学生体会假设和代数方法的一般性。

3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。

教学重点:

用假设法解决鸡兔同笼问题。

教学具准备:

课件。

教学过程:

一、创设情境,激情导入

1.出示原题

师:同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题(课件出示《孙子算经》中的原题):今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

2.理解题意

师:同学们知道这道题的意思吗?请试着说一说。

生:这道题的意思是现在,鸡和兔在一个笼子里,从上面数有35个头,从下面数有94只脚,问鸡和兔各有多少只?

师:这道题的意思正如同学们所想的一样,也就是:(课件出示)笼子里有若干只鸡和兔,从上面数有35个头,从下面数有94只脚,鸡和兔各有多少只?

3.揭示课题

师:这就是著名的鸡兔同笼问题,也正是这节课要研究的问题。

[评析:教学即对文化的传承与弘扬,数学教学也不例外。课初,教师利用我国古代数学名著中的数学趣题直接导入新课学习,让学生感受到了数学文化的悠久与魅力,激发了探究的兴趣和动机,明确了本节课学习的目的与要求。导入新课的方式多种多样,惟有适合学生学习所需的才是最佳。]

二、合作探索,主动构建

1.出示例1

师:为便于研究,我们可先从简单问题入手,把题中的35个头和94只脚分别换成8个头和26只脚,就变成了例1:笼子里有若干只鸡兔。从上面数,有8个头,从下面数,有26只脚,鸡和兔各有几只?

2.理解题意

师:从上面数,有8个头;从下面数,有26只脚分别是什么意思?

生:从上面数,有8个头是说鸡和兔一共有8只;从下面数,有26只脚是说鸡脚和兔脚数共是26只。

3.探索策略

(1)猜想法

师:鸡和兔各有几只呢?我们不妨猜猜看。

生1:3只兔,5只鸡。

生2:6只鸡,2只兔;7只鸡,1只兔;5只兔,3只鸡。

师:伟大的科学家牛顿曾说:有了大胆的猜想才会有伟大的发明和发现。同学们猜的对不对,不妨验证一下。

生1:一只兔4只脚,3只兔就有12只脚;一只鸡2只脚,5只鸡就有10只脚,一共就是22只脚,看来没猜对。

生2:6只鸡、2只兔一共20只脚,也没猜对;7只鸡、1只兔共18只脚,也不对;5只兔、3只鸡共26只脚,猜对了。

师:在4次猜想中,只有1次猜对了,你们觉得用猜想法解决鸡兔同笼问题好不好?

生:不是很容易猜出正确答案,而且当头和脚的只数越多时,越不容易猜出答案。

师:看来,我们还有研究新方法的必要。

[评析:既鼓励学生大胆猜想,又能让学生体会到猜想法的局限性,还能激发学生探索解决问题新策略的兴趣,这样的教学正是新课程所需要的高效教学。]

(3)假设法

①假设全是鸡

师:我们先从表格中右起的第一列,8和0是什么意思?

生:就是有8只鸡和0只兔,也就是假设笼子里全是鸡,这样就有16只脚。

师:实际脚的只数是26只,这样就笼子里就多出了10只脚,该怎么办呢?

生: 用刚才我们发现的规律:在鸡兔总只数不变的情况下,每增加1只兔、减少1只鸡,脚的只数就会增加2只,应该增加5只兔,脚的只数才变成26只,即10里面有5个2。

师:上面的过程能用算式表示出来吗?请同学们试试看。

(学生试着列算式,请一个学生到黑板上去板演。)

师:孩子们都写完了吗?多聪明啊!这是一个同学写的算式,我们来听听他是怎么想的。

生:(对着自己写的算式说想法)假设笼子里全是鸡,就有28=16只脚,而笼子里实际有26只脚,这样就多出了26-16=10只脚,而1只兔比1只鸡多2只脚,这样就有102=5只兔,鸡的只数就是8-5=3只了。

师:说得多好哇!为了让大家进一步理解这种方法,下面我们边看图边分析(课件演示)。

师:算出来后,我们还要检验算的对不对,谁愿意口头检验。

生:32+54=26(只),5+3=8(只)。

师:看来做对了,最后写上答语。

②假设全是兔

师:我们再回到表格中,看看左起第一列中的8和0是什么意思?

生:假设笼子里全是兔。

师:先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?请同桌边讨论边写算式。

(学生讨论写算式,然后指名板演。)

师:这是一位同学写的算式,我们来听听他是怎么想的。

生:假设笼子里全是兔,就有48=32只脚,这样笼子里实际的脚数就比假设的脚数少了32-26=6只脚,1只鸡比1只兔少2只脚,这样就有62=3只鸡,也就知道有8-3=5只兔了。

课件演示:假设法 中假设全是兔的情况。

师:在列表的基础上,我们想到了两种算术方法。回头看看这两种方法的第一步,一个假设全是鸡,另一个假设全是兔,我们给这两种方法起个名字吧。

生:假设法。

师:我们都认为猜想法和列表法有局限性,假设法还有局限性吗?

生:(讨论后)用假设法应该没有局限性了。

[评析:让学生认识、理解、运用假设法是本节课的教学重点,也是教学难点。为此,教师以表格中数据变化规律为探究基础,以小组合作、师生互动为探究方式,以课件动态演示为探究辅助手段,巧妙地将认知经验和思维过程转化成了数学语言,即数学算式,从而形成了解决问题的全新的一般策略,发展了学生的思维水平和推理能力。]

(4)代数法

师:在解决鸡兔同笼问题时,除了假设法没有局限性外,还有别的也没有局限性的一般方法吗?

生:方程的方法。

师:那么就请同学们用列方程的方法试一试。

(全班尝试,一名学生板演。)

师:我们来听听这个同学的想法。

生:设有x只兔,鸡就有(8-x)只。列出方程4x+2(8-x)=26,解是x=5,即有5只兔,8-3=5只鸡。

师:老师想问你,这里的 4x和2(8-x)分别表示是什么?

生:4x是兔脚的总数,2(8-x)是鸡脚的总数。

师:方程解完了也要注意检验,列方程的解法还有个名字也就叫代数法。

[评析:代数法是学生在五年级已学的旧方法,但运用到解决鸡兔同笼问题之中又是新策略。教师以旧知识和旧方法为基础,放手让学生大胆尝试、自主探究,并抓住其中的疑难点设问,帮助学生真正理解过程、掌握方法、提升技能。]

4.小结方法

师:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?

生:猜想法,列表法,假设法和代数法。

师:要你们解决《孙子算经》中原题,你现在会选用哪种方法呢?

生1:我选择假设法,假设法比较简便。

生2:我选择代数法,代数法也好理解。

师:下面同学们就用自己喜欢的方法解决这个问题。

[评析:在计算教学中,需要算法多样化,更需要算法的优化;同样,在解决问题教学中,需要策略多样化,更需要策略的优化。发散思维与收敛思维应该兼顾并进。但优化并不等于强加,优化也强调自主和需要过程。在这里,教师对此都恰倒好处地予以了关照。]

三、分层练习,深化认识

1.解决原题

生:先独立完成《孙子算经》中的原题,后相互评议。

师:刚才我们用自己的方法解决了这个问题,那么《孙子算经》中又是怎样解决这个问题的呢?同学们想知道吗?我们一起去看看?(课件演示抬腿法 )同学们古人的解法巧妙吗?如果大家对这种解法感兴趣,课后可以再研究。请同学们想一想,在日常生活中还有哪些情况类似于鸡兔同笼问题?

2.举出实例

生1:买了一些苹果和梨子,告诉苹果和梨子的单价和总数量,还有总的价钱,求苹果和梨分别买了多少千克。

生2:自行车和汽车一共有几辆,一共有多少个轮子,求汽车和自行车分别有几辆。

师:可见生活中类似于鸡兔同笼的问题有很多,这些问题都可用不同的数学方法来解决,课后可用我们喜欢的方法解决这些问题。

3.课堂作业

从第115页做一做中自选1~2道题完成。

[评析:《孙子算经》中原题的解决,让学生排除了课初的`悬念;作为特殊而巧妙的古代抬腿法的课件简介,让学生进一步感受到了我国古代数学的魅力;放手让学生对生活中类似于鸡兔同笼问题的列举,让学生体会到了此类问题在现实中的广泛存在,进而凸显了本节课的学习价值;书面作业的当堂完成和自由选择,足以体现了教学的高效和学生解决问题技能的及时训练与提升,以及对学生学习自主性的尊重。]

[总评:鸡兔同笼问题过去是少数精英学生学习的竞赛内容,如今是全体学生学习的一般内容。如何能较好地达成教学目标,让全体学生学得了、学得好、学得乐,广大教师都在密切关注。从本节课的教学效果来看,学生的表现还的确如此。究其原因,主要是教师特别注重了以下主要方面。

1.注重解题策略的多样

教学中,教师组织学生多手段、多层面、多角度地探索问题,学生先后运用猜测法、列表法、假设法、代数法等分析和解决问题,从而获得了分析问题和解决问题的基本方法和一般方法,体验了解决问题策略的多样性,发展了创新意识。在注重解决问题策略多样化的同时,教师还注重了解决问题策略的自主优化,注重了不同策略间的相互联系和影响,注重了解决问题策略的局限性和一般性。

2.注重思维能力的培养

让学生在参与观察、实验、猜想、证明、综合实践等数学活动中,发展合情推理和演绎推理能力,用数学语言清晰地表达自己的想法是培养学生思维能力的重要途径。从课初的随意猜想到表格中的有序猜想,从一般验证到表格中数据变化规律的发现,从列表法很快自然联想到假设法、代数法,学生的思维经历了从无序到有序、从特殊到一般、从借鉴到创新、从肤浅到深刻等方面的巨大变化,学生的思维能力也随之得到了极大的提升。

3.注重数学思想的渗透

数学广角是人教版课程标准实验教科书中新增的教学内容之一,主要渗透一些基本的数学思想和方法。本节课作为本册教材数学广角中的唯一教学内容,也要求教师有意识的向学生渗透数学思想和方法。如:用容易探究的小数量替代《孙子算经》原题中的大数量的替换法解决问题,渗透了转化的思想和方法;用列表法解决问题,渗透了函数的思想和方法;用算术法解决问题,渗透了假设的思想和方法;用方程法解决问题,渗透了代数的思想和方法等等。这些对于学生而言,无疑奠定了可持续发展的坚实基础。

4.注重数学文化的传承

鸡兔同笼问题是《孙子算经》中一道影响较大的名题,一直流传至日本等国,引起了许多国家的众多数学爱好者的广泛关注。教学中,教师把《孙子算经》、《孙子算经》中关于鸡兔同笼问题的原题和《孙子算经》中用抬腿法这种特殊而灵巧的方法解决这一问题的过程,用课件科学而生动地再现于课堂,极大地激发和调动了学生的探究兴趣,充分地传承和弘扬了经典的数学文化,较好地体现和提升了课堂的教学品味。]

人教版鸡兔同笼教学设计【第四篇】

教学内容:

人教版《数学》四年级下册P103——P104页数学广角——《鸡兔同笼》。

教材分析:

“鸡兔同笼”问题是我国民间广为流传的有趣的数学问题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。对于四年级的学生来说,解决“鸡兔同笼”问题最好的方法是列表法或假设法。“假设法”有利于培养学生的逻辑推理能力,列表法可以让学生经历猜测、验证等解决问题的基本策略。通过两种方法的探究让学生感知解决问题的多样性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。

教学目标:

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、经历自主探究解决问题的过程,能够用列表、假设的方法解决“鸡兔同笼”问题,使学生感知解决问题的多样性。

3、在解决问题的过程中,培养学生的。逻辑推理能力,增强应用意识和实践能力。

教学重点:

1、理解掌握解决问题的不同思路和方法。

2、学会用不同的方法解决实际生活中有关“鸡兔同笼”的问题。

教学难点:

理解掌握假设法,能运用假设法解决数学问题。

教学具准备:

表格

教学过程:

一、导入

师生谈话导入新知

(设计理念:通过谈话营造轻松的学习环境,同时引出课题,让学生感知我国古代数学文化的源远流长激发学生的民族自豪感;通过谈话引出问题为下一教学环节做好铺垫。)

二、探究新知

1、质疑:提问:

(1)一只鸡和一只兔不看外表单从数量上看有什么相同点和不同点?

(2)鸡和兔相比:什么比什么多?多多少?

(3)出示:如果有4只兔和3只鸡同笼,一共有多少个头和多少只脚呢?

(4)尝试解决,交流想法;

(5)出示交换已知条件以后的题目。

(设计理念:通过对比两种动物的异同,引出基础题目,让学生经历观察、比较、分析、归纳概括的过程,同时也让学生了解鸡兔腿数数量的差别,每只兔比每只鸡腿数多2,这为下一教学环节,猜测、调整和有序整理探究列表法奠定基础,同时也为探究假设法做好铺垫。)

2、教学例1

(1)出示例题1。

师:请同学们读一读,和前面的题目一样吗?什么地方不一样?

请同学们大胆的猜一猜鸡兔各有几只?猜的时候要注意什么?(共有8个头)

(设计理念:通过对比两题的已知和未知条件的不同培养学生认真审题的良好学习习惯,同时也为后面的猜测、有序整理、验证做好铺垫。)

(2)学生自由猜测。

师:大家的猜测有很多种,听起来有点乱,我们按顺序整理一下(出示表格)。

(3)验证猜想。

(4)观察发现规律。

(5)总结概括:在数学中这种方法叫列表法。(板书)。

(设计理念:通过猜测让学生感知在解决类似问题时这是最基础的方法,然后通过列表法进行验证让学生感知有序整理可以找到问题的答案。最后通过观察、交流探讨发现鸡兔数量的变化引起腿数变化的规律,这样也积累了学生解决问题的经验。)

质疑:如果遇到鸡兔数目多的时候,这种方法行吗?怎么办呢?

3、探讨假设法:

a、假设全是兔。

1师以童话故事的形式引入全是兔的情境。

2集体探究,引导交流。

b、假设全是鸡。

1师再次继续童话故事引入全是鸡的情境。

2小组独立探究交流假设全是鸡的计算方法。

3指名小组展示并叙述计算过程。

4小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。(板书:假设法)

5延伸:其实解决“鸡兔同笼”的问题还有其它方法,同学们如果有兴趣的话下来以后可以了解一下。

(设计理念:通过情境假设,让学生感知数学的趣味性,提高了学生探究新知的兴趣,也为假设法的探究增添了趣味。同时,学生又经历了自主探究、合作交流的学习过程,体验了解决问题的方法的多样性。为后面灵活的解决问题打下了基础。)

三、练习巩固

出示练习题。

四、课后总结

(设计理念:学生通过练习一方面加强了对列表法、假设法的巩固,另一方面学生运用所学知识灵活的解决问题,增强了学生的应用意识;通过小结收获整理课堂新知,培养学生归纳总结的能力。)

板书设计:

鸡兔同笼

1、列表法

2、假设法

相关推荐

热门文档

22 1211285