初中数学教学设计精编5篇
【导言】此例“初中数学教学设计精编5篇”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
初中数学教学设计1
一、指导思想
本课以全面推进素质教育、深化教学改革、“健康第一”为指导思想,突出一个“新”字,体现一个“改”字,倡导学生自主探究式学习,真正体现学生的主体地位,并关注学生的个体差异和不同需求,面向全体学生,做到人人享有体育、人人都有进步、人人拥有健康。
1、按照学生生理和心理变化设计教学模式、安排教学内容、选择教学方法,注重身心健康。
2、加强球类单个技术教学与实战的联系,增加田径教学的趣味性,为学生的终生体育奠定基础。
3、以“生动、自主、愉悦”为主旋律,充分调动学生的积极思维,培养学生的实践能力和创新精神。
二、教材分析
篮球一直是学生非常喜爱的一项体育活动,运球在篮球教材中占有比较重要的地位,熟练的掌握一种或几种运球技术成为大多数高中生的迫切需要。通过本教材的学习,可以发展学生的速度、灵敏、协调等身体素质。
在以往的运球教学中,教学方法和形式比较单一,教学程序机械化,不利于学生的个性发展和创造性思维的培养。在本教材体前变向换手运球的教学中,丰富了教学方法,突出节奏教学,让学生在练习中不断的发现问题和改善方法,然后导出主题,再通过练习解决问题。
教学重点:从体验到体会“变向”的节奏和方法
教学难点:手控制球和脚步的协调配合
田径中的耐久跑相对是一个比较枯燥的教材,但通过对该项目的练习,能很好的锻炼学生的耐力素质和意志品质。
本次课中,为学生创设了趣味图形跑,能很好的激发学生的学习兴趣,发挥学生积极思维,让学生在愉悦和轻松的环境中完成练习,并起到很好的锻炼效果。同时在课中让学生自己体会如何才能跑的轻松,从而导出本次课的重点:“呼吸节奏”。
教学重点:呼吸节奏
篮球和耐久跑这两个教材搭配在一起,科学合理,同时这两个教材内容有一个共同的鲜明的特点,就是提出体育课堂教学的一个“节奏”概念,让学生真正学会学习。
三、学情分析
学生应该具备一定的观察、分析、解决问题的能力,球类项目的学习也有一定的基础,有较强的表现欲和求知欲。
四、教法分析
(一)游戏比赛法:
抓住学生的心理特征,运用游戏比赛的方法,激发学生的学习兴趣,使学生在玩中学、赛中练,进而达到提高技术动作和运用能力的目的。
(二)自主探究教学法:
教师提出问题,让学生讨论和分析,激发学生的创造性思维,培养学生多方面、多角度考虑问题,发展学生个性。
(三)评价教学法
充分发挥学生的主观能动性,让学生自评、互评,教师参与其中,引导学生发现问题,并提出改进意见,培养互助合作精神。
五、学法分析
(一)鼓励和激发学生的学习热情,培养学生善于观察和思考的能力。
(二)小组合作探究式学习
六、课的流程
开始部分
1、熟悉球性
基本部分
1、运球换位
2、“节奏”运球
3、行进间变向运球
4、组合体前变向换手运球,体前变向换手运球后投篮
5、耐久跑(“米”字型跑)
7、呼吸节奏
8、原地呼吸节奏
9、完整练习(两次)
结束部分
1、集合并回收器材
2、放松练习
3、小结
初中数学教学设计2
一、素质教育目标
(一)知识教学点
使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系。
(二)能力训练点
逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力。
(三)德育渗透点
培养学生独立思考、勇于创新的精神。
二、教学重点、难点
1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用。
2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用。
三、教学步骤
(一)明确目标
1.复习提问
(1)、什么是∠A的正弦、什么是∠A的余弦,结合图形请学生回答。因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施。
(2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).
(3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”。
2.导入新课
根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值。”这是否是真命题呢?引出课题。
(二)、整体感知
关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明。引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式。在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明。
(三)重点、难点的学习和目标完成过程
1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃。
2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱。因此教师应进一步引导:sinA=cos(90°-A),cosA=sin(90°-A)(A是锐角)成立吗?这时,学生结合正、余弦的概念,完全可以自己解决,教师要给学生足够的研究解决问题的时间,以培养学生逻辑思维能力及独立思考、勇于创新的精神。
3.教师板书:
任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
sinA=cos(90°-A),cosA=sin(90°-A).
4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不熟练,而定理又涉及余角、余函数,使学生极易混淆。因此,定理的应用对学生来说是难点、在给出定理后,需加以巩固。
已知∠A和∠B都是锐角,
(1)把cos(90°-A)写成∠A的正弦。
(2)把sin(90°-A)写成∠A的余弦。
这一练习只能起到巩固定理的作用。为了运用定理,教材安排了例3.
(2)已知sin35°=,求cos55°;
(3)已知cos47°6′=,求sin42°54′.
(1)问比较简单,对照定理,学生立即可以回答。(2)、(3)比(1)则更深一步,因为(1)明确指出∠B与∠A互余,(2)、(3)让学生自己发现35°与55°的角,47°6′分42°54′的角互余,从而根据定理得出答案,因此(2)、(3)问在课堂上应该请基础好一些的同学讲清思维过程,便于全体学生掌握,在三个问题处理完之后,将题目变形:
(2)已知sin35°=,则cos______=
(3)cos47°6′=,则sin______=,以培养学生思维能力。
为了配合例3的教学,教材中配备了练习题2.
(2)已知sin67°18′=,求cos22°42′;
(3)已知cos4°24′=,求sin85°36′.
学生独立完成练习2,就说明定理的教学较成功,学生基本会运用。
教材中3的设置,实际上是对前二节课内容的综合运用,既考察学生正、余弦概念的掌握程度,同时又对本课知识加以巩固练习,因此例3的安排恰到好处。同时,做例3也为下一节查正余弦表做了准备。
(四)小结与扩展
1.请学生做知识小结,使学生对所学内容进行归纳总结,将所学内容变成自己知识的组成部分。
2.本节课我们由特殊角的正弦(余弦)和它的余角的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:任意一个锐角的正弦值等于它的余角的余弦值,任意一个锐角的余弦值等于它的余角的正弦值。
四、布置作业
初中数学教学教案3
教学目标
1、认识度、分、秒,会进行度、分、秒间单位互化及角的和、差、倍、分计算。
2、通过度、分、秒间的互化及角度的简单运算,经历利用已有知识解决新问题的探索过程,培养学生的数感和对数学活动的兴趣。
3、在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,尊重和理解他人的见解,从而在交流中获益。
教学重点
度、分、秒间单位互化及角的和、差、倍、分计算。
知识难点
度、分、秒间单位互化及角的和、差、倍、分计算。
教学准备
量角器、三角尺。
教学过程
(师生活动)设计理念
复习
任意画一个锐角和钝角,用字母分别表示这两个角,用量角器分别理出这两个角的度数。复习角的概念,角的表示及量角器的使用,为学习角度制作准备。
探究新知在航行、测绘等工作以及生活中,我们经常会碰到上述类似问题,即如何描述一个物体的方位。
让学生回忆学过的描述方法,师生共同探讨解决问题的办法。
不断移动可疑船的位置,让学生描述缉私艇的航线,探求解决问题的规律。
方位的表示通常用北偏东多少度、北偏西多少度或者南偏东多少度、南偏西多少度来表示。北偏东45度、北偏西45度、南偏东45度、南偏西45度,分别称为东北方向、西北方向,东南方向、西南方向。
初中数学教学设计4
一、教材分析
反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。
二、学情分析
由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。
三、教学目标
知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式。
解决问题:能从实际问题中抽象出反比例函数并确定其表达式。情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际。
四、教学重难点
重点:理解反比例函数意义,确定反比例函数的表达式。
难点:反比例函数表达式的确立。
五、教学过程
(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;
(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单
位:m)随宽x(单位:m)的变化而变化。
请同学们写出上述函数的表达式
14631000(2)y=tx
k可知:形如y=(k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=是自变量,y是函数。
此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际。由于是分式,当x=0时,分式无意义,所以x≠0。
当y=中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。
举例:下列属于反比例函数的是
(1)y=(2)xy=10(3)y=k-1x(4)y=-
此过程的目的是通过分析与练习让学生更加了解反比例函数的概念问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)
已知y与x成反比例,则可设y与x的函数关系式为y=
kx?1
k已知y+1与x成反比例,则可设y与x的函数关系式为y+1=xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=
已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1=kx?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。
例:已知y与x2反比例,并且当x=3时y=4
(1)求出y和x之间的函数解析式
(2)求当x=时y的值
解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2
和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业
通过此环节,加深对本节课所内容的认识,以达到巩固的目的。
六、评价与反思
本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式。应该对这一方面的内容多练习巩固。
初中数学设计教案5
一 、教学目标
(一)基础知识目标:
1。理解方程的概念,掌握如何判断方程。
2。理解用字母表示数的好处。
(二)能力目标
体会字母表示数的好处,画示意图有利于分析问题,找相等关系是列方程的重要一步,从算式到方程(从算术到代数)是数学的一大进步。
(三)情感目标
增强用数学的意识,激发学习数学的热情。
二、教学重点
知道什么是方程、一元一次方程,找相等关系列方程。
三、教学难点
如何找相等关系列方程
四、教学过程
我们知道方程是一个含有未知数的'等式,而等式表示了一个相等关系。因此对于
任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。
师生共同分析、研究一元一次方程解简单应用题的方法和步骤
例1 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库 原来有多少面粉?
师生共同分析:
1。本题中给出的已知量和未知量各是什么?
2。已知量与未知量之间存在着怎样的相等关系?(原来重量—运出重量=剩余重量)
若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得
x—15%x=42 500,
此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?
(还有,原来重量=运出重量+剩余重量;原来重量—剩余重量=运出重量)
教师应指出:(1)这两种相等关系的表达形式与“原来重量—运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(1)仔细审题,透彻理解题意。即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;
(2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键一步);
(3)根据相等关系,正确列出方程。即所列的方程应满足两边的量要相等;
例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果
分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一
小组有多少学生,共摘了多少个苹果?
(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨。解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误。并严格规范书写格式)
解:设第一小组有x个学生,依题意,得
3x+9=5x—(5—4),
解这个方程: 2x=10,
所以 x=5。
其苹果数为 3× 5+9=24。
答:第一小组有5名同学,共摘苹果24个。
学生板演后,引导学生探讨此题是否可有其他解法,并列出方程。
(设第一小组共摘了x个苹果,则依题意,得 )
课堂练习:
1。买4本练习本与3支铅笔一共用了1。24元,已知铅笔每支0。12元,问 练习本每本多少元?
2某工厂女工人占全厂总人数的 35%,男工比女工多 252人,求全厂总人数。
五、课堂小结
首先,让学生回答如下问题:
1。本节课学习了哪些内容?
2。列一元一次方程方法和步骤是什么?
3。在运用上述方法和步骤时应注意什么?
依据学生的回答情况,教师总结如下:
(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;
布列方程)
(2)以上步骤同学应在理解的基础上记忆。
六、作业布置
1。买3千克苹果,付出10元,找回3角4分。问每千克苹果多少钱?
2。用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?