《勾股定理》教学设计精编5篇
【阅读指引】阿拉题库网友为您分享整理的“《勾股定理》教学设计精编5篇”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
数学勾股定理教案【第一篇】
一、教学目标
1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理.
2.探究勾股定理的逆定理的证明方法.
3.理解原命题、逆命题、逆定理的概念及关系.
二、重点、难点
1.重点:掌握勾股定理的逆定理及证明.
2.难点:勾股定理的逆定理的证明.
3.难点的突破方法:
先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法.充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受.
为学生搭好台阶,扫清障碍.
⑴如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角.
⑵利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决.
⑶先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证.
三、课堂引入
创设情境:⑴怎样判定一个三角形是等腰三角形?
⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想.
四、例习题分析
例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?
⑴同旁内角互补,两条直线平行.
⑵如果两个实数的平方相等,那么两个实数平方相等.
⑶线段垂直平分线上的点到线段两端点的距离相等.
⑷直角三角形中30°角所对的直角边等于斜边的一半.
分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用.
⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假.
解略.
本题意图在于使学生了解命题,逆命题,逆定理的概念,及它们之间的关系.
例2(P82探究)证明:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.
分析:⑴注意命题证明的格式,首先要根据题意画出图形,然后写已知求证.
⑵如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角.
⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决.
⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证.
⑸先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法.充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受.
证明略.
通过让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,锻炼学生的动手操作能力,再通过探究理论证明方法,使实践上升到理论,提高学生的理性思维.
例3(补充)已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1)
求证:∠C=90°.
分析:⑴运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大.②分别用代数方法计算出a2+b2和c2的值.③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形.
⑵要证∠C=90°,只要证△ABC是直角三角形,并且c边最大.根据勾股定理的逆定理只要证明a2+b2=c2即可.
⑶由于a2+b2=(n2-1)2+(2n)2=n4+2n2+1,c2=(n2+1)2= n4+2n2+1,从而a2+b2=c2,故命题获证.
本题目的在于使学生明确运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大.②分别用代数方法计算出a2+b2和c2的值.③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形.
勾股定理教案【第二篇】
教学课题:勾股定理的应用
教学时间(日期、课时):
教材分析:
学情分析:
教 学目标:
能运用勾股定理及直角三角形的判定条件解决实际问题。
在运用勾股定理解决实际问题的过程中,感受数学的“转化” 思想(把解斜三角形问题转化为解直角三角形的问题),进一步发展有条理思考和有条理表达的能力,体会数学的应用价值。
教学准备
《数学学与练》
集体备课意见和主要参考资料
页边批注
教学过程
一、 新课导入
本课时的教学内容是勾股定理在实际中的应用。除课本提供的情境外,教学中可以根据实际情况另行设计一些具体情境,也利用课本提供的素材组织数学活动。比如,把课本例2改编为开放式的问题情境:
一架长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m。如果梯子的顶端下滑,你认为梯子的底端会发生什么变化?与同学交流 。
创设学生身边的问题情境,为每一个学生提供探索的空间,有利于发挥学生的主体性;这样的问题学生常常会从自己的生活经验出发,产生不同的思考方法和结论(教学中学生可能的结论有:底端也滑动 ;如果梯子的顶端滑到地面 上,梯子的顶端则滑动8m,估计梯子底端的滑动小于8m,所以梯子的顶端 下滑,它的底端的滑动小于;构造直角三角形,运用勾股定理计算梯子滑动前、后底端到墙的垂直距离的差,得出梯子底端滑动约的结论等);通过与同学交流,完善各自的想法,有利于学生主动地把实际问题转化为数学问题 ,从中感受用数学的眼光审视客观世界的乐趣 。
二、新课讲授
问题一 在上面的情境中,如果梯子的顶端下滑 1m,那么梯子的底端滑动多少米?
组织学生尝试用勾股定理解决问题,对有困难的学生教师给予及时的帮助和指导。
问题二 从上面所获得的信息中,你对梯子下滑的变化过程有进一步的思考吗?与同学交流。
设计问题二促使学生能主动积 极地从数学的角度思考实际问题。教学中学生可能会有多种思考、比如,①这个变化过程中,梯子底端滑动的距离总比顶端下滑的距离大;②因为梯子顶端 下滑到地面时,顶端下滑了8m,而底端只滑动4m,所以这个变化过程中,梯子底端滑动的距离不一定比顶端下滑的距离大;③由勾股数可知,当梯子顶端下滑到离地面的垂直距离为6m,即顶端下滑2m时,底端到墙的垂直距离是8m,即底端电滑动2m等。教学中不要把寻找规律作为这个探索活动的目标,应让学生进行充分的交流,使学生逐步学会运用数学的眼光去审视客观世界,从不同的角度去思考问题,获得一些研究问题的经验和方法、
3、例题教学
课本的例1是勾股定理的简单应用,教学中可根据教学的实际情况补充一些实际应用问题,把课本习题第4题作为补充例题。通过这个问题的讨论,把“32+b2=c2”看作一个方程,设折断处离地面x尺,依据问题给出的条件就把它转化为熟悉的会解的一元二次方程32+x2=(10—x)2,从中可以让学生感受数学的“转化”思想,进一步了解勾股定理的悠久历史和我国古代人民的聪明才智、
三、巩固练习
1、甲、乙两人同时从同一地点出发,甲往东走了4km,乙往南走了6km,这时甲、乙两人相距__________km。
2、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是( )。
(A)20cm (B)10cm (C)14cm (D)无法确定
3、如图,一块草坪的形状为四边形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m。求这块草坪的面积。
四、小结
我们知道勾股定理揭示了直角三角形的三边之间的数量关系,已知直角 三角形中的任意两边就可以依据勾股定理求出第三边。从应用勾股定理解决实际问题中,我们进一步认识到把直角三角形中三边关系“a2+b2=c2”看成一个方程,只要 依据问题的条件把它转化为我们会解的方程,就把解实际问题转化为解方程。
《勾股定理》优秀教案【第三篇】
一、教学目标
(一)教学知识点
1、掌握勾股定理,了解利用拼图验证勾股定理的方法、
2、运用勾股解决一些实际问题、
(二)能力训练要求
1、学会用拼图的方法验证勾股定理,培养学生的创新能力和解决实际问题的能力、
2、在拼图过程中,鼓励学生大胆联想,培养学生数形结合的意识、
(三)情感与价值观要求
利用拼图的方法验证勾股定理,是我国古代数学家的一大贡献、借助对学生进行爱国主义教育、并在拼图的过程中获得学习数学的快乐,提高学习数学的兴趣、
二、教学重、难点
重点:勾股定理的证明及其应用、
难点:勾股定理的证明、
三、教学方法
教师引导和学生自主探索相结合的方法、
在用拼图的方法验证勾股定理的过程中、教师要引导学生善于联想,将形的问题与数的问题联系起来,让学生自主探索,大胆地联系前面知识,推导出勾股定理,并自己尝试用勾股定理解决实际问题、
四、教具准备
1、每个学生准备一张硬纸板;
2、投影片三张:
第一张:问题串(记作1、1、2 A);
第二张:议一议(记作1、1、2 B);
第三张:例题(记作1、1、2 C)。
五、教学过程
Ⅰ、创设问题情景,引入新课
[师]我们曾学习过整式的运算,其中平方差公式(a+b)(a—b)=a2—b2;完全平方公式(ab)2=a22ab+b2是非常重要的内容、谁还能记得当时这两个公式是如何推出的?
[生]利用多项式乘以多项式的法则从公式的左边就可以推出右边、例如(a+b)(a—b)=a2—ab+ab—b2=a2—b2,所以平方差公式是成立的。
[生]还可以用拼图的方法来推出、例如:(a+b)2=a2+2ab+b2、我们可以用一个边长为a的正方形,一个边长为b的正方形,两个长和宽分别为a和b的长方形可拼成如下图所示的边长为(a+b)的正方形,那么这个大的正方形的面积可以表示为(a+b)2;又可以表示为a2+2ab+b2、所以(a+b)2=a2+2ab+b2。
关于勾股定理教案【第四篇】
(一)教材所处的地位
这节课是九年制义务教育课程标准实验教科书八年级第十八章第一节勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)根据课程标准,本课的教学目标是:
1、知识技能:了解勾股定理的文化背景,体验勾股定理的探索过程。
2、数学思考:在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。
3、解决问题:①通过拼图活动,体验数学思维的严谨性,发展形象思维。
②在探究过程中,学会与人合作并能与他人交流思维的过程和探究的结果。
4、情感态度:①通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激发学生发奋学习。
②在探究过程中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神。
(三)本课的教学重点:探索和证明勾股定理
本课的教学难点:用拼图的方法证明勾股定理
教法分析:针对八年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题实验操作归纳验证问题解决巩固练习课堂小结 布置作业七部分。
学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
(一)提出问题:
首先提出问题1:你知道下图所表示的意义吗?创设问题情境,2002年在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的奥运会,这就是本届大会会徽的图案,你听说过勾股定理吗?通过提出问题,从而激发学生的求知欲。
其次提出问题2:你知道勾三、股四、弦五的意义吗?此问题由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生的学习兴趣,激发学生的求知欲。
《勾股定理》优秀教案【第五篇】
课题:
勾股定理
课型:
新授课
课时安排:
1课时
教学目的:
一、知识与技能目标理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。
二、过程与方法目标通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
三、情感、态度与价值观目标了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。
教学重点:
引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题
教学难点:
用面积法方法证明勾股定理
课前准备:
多媒体ppt,相关图片
教学过程:
(一)情境导入
1、多媒体课件放映图片欣赏:勾股定理数形图,1955年希腊发行的一枚纪念邮票,美丽的勾股树,2002年国际数学大会会标等。通过图形欣赏,感受数学之美,感受勾股定理的文化价值。
2、多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来米长的云梯,如果梯子的底部离墙基的距离是米,请问消防队员能否进入三楼灭火?已知一直角三角形的两边,如何求第三边?学习了今天的这节课后,同学们就会有办法解决了。
(二)学习新课问题一是等腰直角三角形的情形(通过多媒体给出图形),判断外围三个正方形面积有何关系?相传2500年前,毕达哥拉斯(古希腊著名的哲学家、数学家、天文学家)有一次在朋友家做客时,发现朋友家里用砖铺成的地面中反映了直角三角形三边的某种数量关系。你能观察图中的地面,看看能发现什么?对于等腰直角三角形有这样的性质:两直边的平方和等于斜边的平方那么对于一般的直角三角形是否也有这样的性质呢?请大家画一个任意的直角三角形,量一量,算一算。问题二是一般直角三角形的情形,判断这时外围三个正方形的面积是否也存在这种关系?通过这个观察和验算这个直角三角形外围的三个正方形面积之间的关系,同学们发现了什么规律吗?通过前面对两个问题的验证,可以得到勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2。
(三)巩固练习
1、如果一个直角三角形的两条边长分别是6厘米和8厘米,那么这个三角形的周长是多少厘米?
2、解决课程开始时提出的情境问题。
(四)小结
1、背景知识介绍
①《周髀算径》中,西周的商高在公元一千多年前发现了“勾三股四弦五”这一规律;
②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是他的独创。
2、通过这节课的学习,你会写方程了吗?你有什么收获和体会?
(五)作业练习中的1、2、3题。板书设计:勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2。