三角形的面积教学设计【最新5篇】
【导言】此例“三角形的面积教学设计【最新5篇】”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
角形的面积教案【第一篇】
教材分析:
三角形的面积是在学生掌握了三角形的特征以及长方形、正方形面积计算的基础上进行教学的。通过对这部分内容的教学,使学生理解并掌握三角形面积计算公式,会应用公式计算三角形的面积,同时加深三角形与长方形、正方形之间内在联系的认识,培养学生的实际操作能力。进一步发展学生的空间观念和思维能力,提高学生的数学素养。
学情分析:
在学习三角形的面积这一内容前,学生已经认识了三角形的特征;在学习长方形面积、正方形面积以及求组合图形的面积时,已经学会割、补、移等方法,也学会了把未知的学习问题转化为已知的问题。因此在教学三角形的面积这课时,学生已经具备了一定的知识准备和能力基础。
教学目标:
1、经历三角形面积公式的推导过程,理解公式的意义。
2、理解三角形的底和高与“被转化长方形”长和宽之间的关系。
3、会用三角形的面积公式计算三角形的面积。
4、培养学生运用所学知识解决简单的实际问题的能力,体验数学应用价值,使学生感受到数学就在身边。
教学重点:三角形面积公式的推导。
教学难点:理解三角形是同底(长)等高(宽)长方形面积的一半。
教学过程:
一、导入阶段
通过故事情景产生生活中三角形比较大小的问题:
1、比三角形的大小用数学语言来表达是比什么?
2、采用哪些方法可以比较呢?
小结 :运用透明方格纸来比较三角形的大小是一种方法,但你感觉怎样?
二、探究阶段
(一)画三角形。
1、每个学生拿出准备好的长方形纸,按要求画三角形。
操作说明:(1)以长方形纸的一边作为三角形的底边。
(2)以对边的任意一点作为三角形的顶点。
(3)连接顶点与对面的两个角。
(4)你画了一个什么样的三角形?
2、大组交流。
3、猜一猜:要求学生根据自己所画的三角形猜一猜它的面积是整个长方形面积的几分之几?
4、观察已画三角形与长方形之间的特殊关系
5、画出三角形已知底上的一条高,观察已画的三角形的面积占整个长方形面积的几分之几?
(二)实验
1、剪拼三角形。
操作说明:
(1)剪下你所画的三角形。
(2)将剩下部分拼到剪成的三角形中。
思考:剩下部分拼成的三角形是否与剪成的三角形一样大?
(3)填写实验报告。
2、学生完成报告后交流
(三)归纳
根据学生的实验得出结论:
一个直角三角形的面积是相应的长方形面积的一半。
一个锐角三角形的面积是相应的长方形面积的一半。
一个钝角三角形的面积是相应的长方形面积的一半。
(1)请学生用一句话来概括。
(2)用数学的方式来表示:三角形面积=相应长方形面积/2
(3)根据长方形的面积公式,推导三角形的面积公式
(4)用字母表示三角形的面积公式。
三、运用阶段:
1、教学例1
2、计算导入阶段的3个三角形的面积
(1)分别测出3个三角形的底与高,作好记录。
(2)计算出每个三角形的面积。
(3)交流。
n m
a c
b
d3、拓展:找出下列图形中面积相等的两个三角形,为什么?
四、总结
这节课我们学习了什么?2、计算三角形面积要知道那些条件?
角形的面积教案【第二篇】
教学内容:九年制义务教育课本数学五年级第一学期p84—85。
教学目标:1理解三角形面积计算公式的推导过程。
2 掌握三角形面积的计算方法。
3引导学生积极探索解决问题的策略,发展动手操作、
观察、分析、推理、概括等多种能力。
4培养学生在生活实际中发现问题、独立思考、创新思维,用旧知识转化为新知识来解决新问题的能力。
教学重点:理解三角形面积计算公式的推导过程。
教学难点:理解三角形面积是同底(长)等高(宽)长方形面积的一半。
教学准备:教学软件、三角形学具。
教学过程:
一。复习铺垫。
1.数一数下图中有几个直角三角形。
2.我们学过计算哪些图形的面积?(长方形和正方形)
怎么计算他们的面积?
根据学生回答板书:
正方形的面积=边长×边长
长方形的面积=长×宽
3.出示:你会计算它的面积吗?
10 3
4 4
103 10
想这样将上图通过剪拼成一个长方形来计算面积的方法,我们称为割补法。
二。创设情景,引入新课。
师:让天更蓝、水更清、地更绿,二十一世纪是以环保为主题的世界。我校正在开展创建“绿色学校”的活动,我们五(2)班的同学也积极投入到这项活动中,认养了校园里的一块地,要在这块地铺上草坪。同学们来到实地考察地形。猜猜看,他们想了解这块地的那些情况?(电脑演示)
根据学生回答板书:三角形 面积
师:你会计算它的面积吗?你会计算那些图形的面积?
师:能不能把三角形转化成学过的图形呢?
二、动手操作,推导公式。
1 请学生从老师提供的材料中,任意选取一个或两个三角形,以小组为单位,通过剪一剪、拼一拼、折一折,看能不能把三角形转化成我们已经学过的图形。
根据学生汇报媒体演示:
(1)两个直角三角形拼成一个长方形。
(2)两个锐角三角形剪拼成一个长方形。
(3)两个钝角三角形怎么拼呢?先把一个钝角三角形旋转一下,你发现什么?学生会发现两个钝角三角形能剪拼成一个长方形。
2 师提问:
(1)拼成的长方形面积与原来每个三角形的面积有什么关系?
(2)长方形的长和宽分别是原三角形的那部分?
媒体演示后板书:s长= 长× 宽
s三=底 × 高÷2
(3)三种情况的分析。
钝角三角形、锐角三角形都要通过剪拼的方法转化成长方形,那么直角三角形可不可以也用剪拼的方法转化成长方形?
学生讨论后交流,演示。(电脑演示)
对,所有的三角形都能通过剪拼的方法转化成长方形,而直角三角形比较特殊,它不剪拼也能转化为长方形。
3 师:除了用剪拼的方法将两个三角形转化成长方形外,还有 没有其他方法呢?请大家先分组讨论、操作,再汇报。
师:你是怎么转化的?拼成的图形与原三角形的面积有什么关系?长方形的长与宽是原三角形的哪部分?
媒体演示:
(1)将一个直角三角形折成长方形。
(2)将一个锐角三角形剪拼成长方形。
都同样得出三角形的面积=底 × 高÷2。
师:如果用母s表示三角形的面积,用字母a表示三角形的底,用字母h表示三角形的高,那么三角形的面积公式可以写作s= a×h ÷2。
问:同学们,根据公式,要求三角形的面积需要知道哪些条件?
(三角形的底和高)
三、公式运用,巩固练习。
1 通过同学们自己动手操作,我们已经找出了三角形面积的计算公式,现在我们来算一算课的一开始认养的那块土地面积好吗?
媒体演示将土地标上底和高,请学生算出面积。
2 再请大家看这一题。
出示例1 一条红领巾的底边长100厘米,它的高33厘米,求红领巾的面积。
指导学生的书写格式。
学生尝试练习,再看书核对。
3 计算下面三角形的面积。(单位:厘米)
1212 2014
7
14 8 10
4.拓展练习。
电脑演示:同学们,你们知道上海将在2010年申办什么?世博会。我们的城市将以新的面貌迎接这次盛会,请你想办法把街道两旁的旧建筑换新颜。你有什么好办法?可以给旧建筑加顶。
问:加上去的彩钢板是什么形状?要几块?电脑显示各种形状的彩钢板。供学生选择。(电脑显示三角形的底和高)学生再计算面积。算对了,彩钢板就贴在旧建筑顶上。
四、总结。
今天同学们通过自己动手,学会了什么?
附板书:
三角形的面积
s正=a×a
s长= 长× 宽
s三= 底× 高÷2
s = a×h ÷2
角形的面积教学设计【第三篇】
教学内容:三角形面积计算的练习(练习十八5~10题)
教学要求:
1.是学生比较熟练地应用三角形面积计算公式计算三角形的面积。
2.能运用公式解答有关的实际问题。
3.养成良好的审题、检验的习惯,提供正确率。
教学重点:运用所学知识,正确解答有关三角形面积的应用题。
教具准备:展示台
教学过程:
一、基本练习
1.填空。
(1)三角形的面积=,用字母表示是。
为什么公式中有一个“÷2”?
(2)一个三角形与一个平行四边形等底等高,平行四边形的底是米,高是米。三角形的面积是()平方米,平行四边形的面积是()平方米。
2、练习十六2题
二、指导练习
1.练习十六第6题:下图中哪两个三角形的面积相等?(两条虚线互相平行。)你还能画出和它们面积相等的三角形吗?
⑴生用尺量一量这两条虚线间的距离,搞清这两条虚线是什么关系?
⑵看看图中哪两个三角形的面积相等?为什么?
⑶分组讨论如何在图中画出一个与它们面积相等的三角形,并试着画出来
2.练习十六第7题
(1)让学生尝试分。
(2)展示学生的作业
可能有:a、根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积就必然相等。而要找这4个等底等高的小三角形,只需把原三角形的某一边4等份,再将各分点与这边相对的顶点连接起来即可。
b、也可把原三角形先二等分,再把每一份分别二等分。
3、练习十六9x
让学生抓住涂色的三角形的底只有平行四边形底的一半,它的高和平行四边形的高相等,平行四边形的面积=底×高,三角形的面积=(底÷2)×高÷2,所以三角形的面积等于48÷4
4.练习十六第3题:已知一个三角形的面积和底,求高?
让学生列方程解和算术方法解,算术方法176×2÷22,要让学生明确176×2是把三角形的面积转化成了平行四边形的面积。
三、课堂练习
练习十六第8x题。
四、作业
练习十六第4、5题。
课后记:
角形的面积教学设计最新5篇教案【第四篇】
教学目标
1、认知目标:经历三角形面积计算公式的探索过程,推导出三角形的面积计算公式,掌握求三角形面积的计算方法。
2、能力目标:通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。同时学生通过自主探索学习活动,提高实际操作、自主探索能力及运用三角形的面积公式解决实际问题的能力。
3、 情感目标:在探索学习活动中,培养实践能力,培养学生主动参与学习活动的意识、合作意识和创新意识,体会数学问题的探索性,并获得积极的情感体验和成功体验。
教学重点推导、掌握三角形面积的计算公式。
教学方法探究发现法和讨论法。
教学准备教具:多媒体课件、红领巾实物。
学具:剪刀、各种不同类型的三角形等。
课时安排一课时
教学过程
一、创设情境
1、师:细心的同学可能已经发现今天老师有什么不同?对老师今天也配戴了红领巾!这是与我们朝夕相处的红领巾,它是红旗的一角,记得20多年前每当老师佩上戴红领巾时心中和你们一样充满了无比的骄傲和自豪,可你们想不想知道一条红领巾的面积呢?(把红领巾展开贴在黑板上) 2、揭题:(想)那就得知道怎样求三角形的面积,今天这节课就我们一起来探究这个问题好吗?(教师板书课题:三角形的面积)
二、自主探索,合作交流
1、回忆平行四边形的推导过程,启发学生运用所学的方法,探究三角形面积计算公式。
师:前面我们学习了长方形、正方形、平行四边形的面积,那么我们回忆一下,在学习平行四边形面积时是用什么方法求出平行四边形面积的?
生:将平行四边形转化成长方形,通过长方形面积公式推导出平行四边形面积公式。
师:平行四边形的面积公式是什么?
生:平行四边形的面积=底×高
(教师板书)
师:那么我们能不能也用转化的方法来探究如何计算三角形面积呢?想一想,你会怎样做一下,怎样用转化的方法来探究三角形的面积。
生:可以拼、剪,
师:你是怎样具体操作的?小组里的同学可以互相合作实验怎样用转化的方法来探究三角形的面积。师出示要求和发放实验报告。
2、学生拿出老师为其准备的实验材料,自行拼图,教师参与到小组中,去引导。
3、小组派代表上黑板前展示拼的过程,展示时重点引导学生观察、发现三角形与拼成的长方形或平行四边形的关系。选择有代表性的三组,请学生说出拼的过程。填写实验报告。
(为了使学生能看清每个小组拼的过程,教师课件演示。)
4、归纳概括,推导公式。(让学生试着概括)
生:我们拿两个完全一样的三角形,会拼成一个平行四边形。因为每个三角形的面积等于拼成的这个平行四边形面积的一半。平行四边形的面积=底×高,所以这个三角形的面积=底×高&spanide;2。
(教师总结,课件出示)
师:大家看到了,前面这几组同学都是将两个完全一样的三角形拼成了一个平行四边形,探究出平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,每个三角形的面积等于拼成的平行四边形面积的一半。
因为三角形的面积等于拼成的平行四边形面积的一半,所以,三角形的面积=底×高&spanide;2 为什么除以2?
生:因为平行四边形的面积=底×高,三角形的面积等于拼成的平行四边形面积的一半,所以除以2 。
5、完成例2
师:现在你会求红领巾的面积了吗?需要知道什么条件?出示条件生独立完成。指一名板演
三、实践运用,拓展创新
1、小试身手:计算三种三角形的面积:(课件出示)
(1)底3cm,高4cm (2)底4cm,高 (3)底2cm,高3cm
2、小小判官:
(1)两个形状一样的三角形,可以拼成一个平行四边形。…………( )
(2)平行四边形面积一定比三角形面积大。……( )
(3)一个平行四边形与一个三角形等底等高,那么平行四边形的面积一定是三角形的2倍。……………( )
3、生活中的数学:你认识下面的这些道路交通警示标志吗?
我们学校的上下两个路口在放学时经常交通混乱,为了改变这种状况,交警队准备用铁皮制作四块这样警示牌,你能算出需要多少铁皮吗 ?(底9dm,高)
4、已知一个三角形的面积和底,求高。
5、下图中哪个三角形的面积与画阴影三角形的面积相等,为什么?你能在图中在画一个与画阴影的三角形面积相等的三角形吗?试试看。
四、小结
师:通过这节课的探索学习,你有什么收获?
生:我们知道了三角形的面积计算方法,还会用它来进行计算。
生:这节课我们通过自己动手动脑推导出来了三角形的面积公式,我真是太高兴了!……
师出示学习材料,学生阅读后谈感想。体会祖国的古代科学家得了不起,
师:2000多年前就推导出了这个公式。今天同学们通过自己的研究也推导出了三角形的面积计算公式,说明同学们也很聪明,相信将来你们还会有更多更大的发现,到那时你们的名字也将载如史册,大家有信心吗?
角形的面积教学设计最新5篇教案【第五篇】
教学内容:
三角形的面积第84-85页
教学目标:
1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。
2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。
3、培养学生的创新意识和合作精神。
教学重点:
理解三角形面积计算公式,正确计算三角形的面积、
教学难点:
在转化中发现内在联系及推导说理。
学具准备:
每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。红领巾等。
教学过程
复习导入:
1、复习:想一想,平行四边形的面积怎样计算?这个公式是怎么推导出来的?
指名说一说,师可再现推导过程。
2、导入:出示红领巾,它是什么图形?它的面积该怎么计算?揭示课题。
二、探究三角形的面积公式、
1、启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?
2、用两个完全一样的直角三角形拼、
(1)教师参与学生拼摆,个别加以指导
(2)演示课件:拼摆图形
(3)讨论
①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?
②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形的面积有什么关系?
3、用两个完全一样的锐角三角形拼、
(1)组织学生利用手里的学具试拼、(指名演示)
(2)演示课件:拼摆图形(突出旋转、平移)
教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?
4、用两个完全一样的钝角三角形来拼、
(1)由学生独立完成、
(2)演示课件:拼摆图形
5、讨论:
(1)两个完全相同的三角形都可以转化成什么图形?
(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?
(3)三角形面积的计算公式是什么?
6、引导学生明确:
①两个完全一样的三角形都可以拼成一个平行四边形。
②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)
③这个平行四边形的底等于三角形的底。(同时板书)
④这个平行四边形的高等于三角形的高。(同时板书)
(3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)
板书:三角形面积=底×高&spanide;2
(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?
7、教学例1
红领巾的底是100cm,高33cm,它的面积是多少平方厘米?
1、由学生独立解答、
2、订正答案(教师板书)
三、总结:
(一)总结这一节课的收获,并提出自己的问题、
(二)教师提问:要求三角形面积需要知道哪两个已知条件?求三角形面积为什么要除以2?
四、反馈练习
计算下面每个三角形的面积、
1、底是米,高是2米;
2、底是3分米,高是分米;
(三)判断
1、一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )
2、等底等高的两个三角形,面积一定相等。( )
3、两个三角形一定可以拼成一个平行四边形。( )
4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。( )
板书设计
三角形的面积
平行四边形的面积=底×高,
三角形面积=拼成的平行四边形的一半,100×33&spanide;2=1650(cm)
三角形面积=底×高&spanide;2
S=ah&spanide;2