首页 > 学习资料 > 教学设计 >

《平方差公式》的精编教学设计【优推5篇】

网友发表时间 141465

【导言】此例“《平方差公式》的精编教学设计【优推5篇】”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

平方差公式教学课件【第一篇】

平方差公式教学课件

教学目的:

1、使学生会推导平方差公式,并掌握公式特征。

2、使学生能正确而熟练地运用平方差公式进行计算。

教学重点:

使学生会推导平方差公式,掌握公式特征,并能正确而熟

练地运用平方差公式进行计算。

教学难点:

掌握平方差公式的特征,并能正确而熟练地运用它进行计算。

教学过程:

一、复习引入

1、复述多项式与多项式的乘法法则

2、计算 (演板)

(1)(a+b)(a-b) (2)(m+n)(m-n)

(3)(x+y)(x-y) (4)(2a+3b)(2a-3b)

3、引入新课,由2题的计算引导学生观察题目特征,结果特征(引入新课,板书课题)

二、新课

1、平方差公式

由上面的运算,再让学生探究

现在你能很快算出多项式(2m+3n)与多项式(2m-3n)的乘积吗? 引导学生把2m看成a,3n看成b写出结果。

(2m+3n)(2m-3n)=(2m)2-(3m)2=4m2-9n2

(a + b)(a - b)= a2 - b2

向学生说明:我们把

(a+b)(a-b)=a2- b2 (重点强调公式特征)

叫做平方差公式,也就是:

两个数的和与这两个数的'差等于这两个数的平方差。

3、练习:判断下列式子哪些能用平方差公计算。(小黑板)

(1)(-x-2y)(-x+2y) (2)(-2a+3b)(2a-3b)

(3)(a+3b)(3a-b) (4)(-m-3n)(m-3n)

2、教学例1

(1)(2x+1)(2x-1); (2) (x+2y)(x-2y)

(2)分析:让学生先说一说这两个式子是否符合平方差公式特征,再说一说哪个相当于公式中的a,哪个相当于公式中的b,然后套公式。

(3)具体解题过程:板书,同教材,略

3、教学例2 例3

先引导学  生分析后指名学生演板,略

4、练习:课本P110 1(指名演板) 2、(口答)3、演板

三、巩固练习:(小黑板)

1、填空:(1)(x+3)(x-3)=__________ (2)(-1-2x)(2x-1)=______

(3)(-1-2x)(-2x+1)=_____________ (4)(m+n)( )=n2-m2

(5)( )(-x-1)=1-x2 (6)( )(a-1)=1-a2

2、选择题

(1) 下列可以用平方差公式计算的是( )

A、(2a-3b)(-2a+3b) B、(- 4b-3a)(-3a+4b)

C、(a-b)(b-a) D、(2x-y) (2y+x)

(2)下列式子中,计算结果是4x2-9y2的是( )

A、(2x-3y)2 B、(2x+3y)(2x-3y)

C、(-2x+3y)2 D、(3y+2x)(3y-2x)

(3)计算(b+2a)(2a-b)的结果是( )

A、4a2- b2 B、b2- 4a2&

《完全平方公式与平方差公式》教学设计【第二篇】

一、课 题 实际问题与二元一次方程组(三) 编写备课组

二、本课学习目标与任务:1、进一步提高分析,解决问题的能力。

2、学会条件整理,明晰解题思路。

3、理解设间接未知数的意义。

三、知识链接:1、学会用列表格或画图法分析题目,理顺关系,使得各种数量关系一目了然,具有直观易懂的优点,避免了因数据多,关系复杂而混淆不清。

2、当直接设未知数时难于列出方程或找到相关的等量关系,我们可采取用间接设未知数的办法。

四、自学任务(分层)与方法指导:1、长青化工厂与A,B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地,已知公路运价为元/(吨。千米)。铁路运价为元/(吨。千米),且这两次运输共支出公路运费15000元。铁路运费97200元。这批产品的销售款比原料费与运输费的和多多少元?

问题设疑:从A到长青化工厂,铁路走多少公里?公路走多少公里?

从长青化工厂到B,铁路走多少公里?公路走多少公里?

铁路每吨千米运价是多少?公路每吨千米运价是多少?

两次运输总支出为多少元?

分析:销售款与产品数量有关,原料费与原料数量有关,设产品重 吨,原料重 吨,根据题中数量关系填定下表:

产品 吨

原料 吨

合计

公路运费(元)

铁路运费(元)

价 值(元)

题目所求数值是 ,为此需先解出 与 。

由上表,列方程组

解这个方程组,得

因此,这批产品的销售款比原料费与运输费的和多 元。

五、小组合作探究问题与拓展:1七年级某班同学参加平整土地劳动,运土人数比挖土人数的一半多3人,若从挖土人员中抽出6人去运土,则两者人数相等,原来有运土________人,挖土_______人。

2、足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分,一个队打11场,负3场,共得16分,那么这个队胜了______ 场。

3、甲、乙两厂计划在五月份共生产零件360个,结果甲完成了计划的112%,乙完成了计划的110%,两厂生产了零件400个,则五月份甲、乙两厂超额生产的零件分别为_多少个?

六、自学与合作学习中产生的问题及记录

当堂检测题

1、学校的篮球数比排球数的2倍少3个,足球数与排球数的比是2:3,三种球共41个,则篮球有_______个,排球有______个,足球有_______个。

2、已知梯形的面积是28平方厘米,高是4厘米,它的下底比上底的2倍少1厘米,则梯形的上、下底分别是____________。

3、小兵最近购买了两种三年期债券5000元,甲种年利率为%,乙种年利率为6%,三年后共可得到利息888元,则他购甲种债券________ 元,乙种债券_______元。

4、甲对乙风趣地说:“我像你这样大岁数的那年,你才2岁;而你像我这样大岁数的那年,我已经38岁了。”则甲、乙两人现在的岁数分别是_______。

5、某商店为了处理积压商品,实行亏本销售,已知购进的甲、乙商品原价共为880元,甲种商品按原价打8折,乙种商品按原价打七五折,结果两种商品共亏196元,则甲、乙商品的原价分别为( )

A、400元,480元B、480元,400元

C、360元,300元D、300元,360元

《平方差公式》优质教学设计 例【第三篇】

1.掌握平方差公式的推导和运用,以及对平方差公式的几何背景的理解;(重点)

2.掌握平方差公式的应用.(重点、难点)

一、情境导入

1.教师引导学生回忆多项式与多项式相乘的法则.

学生积极举手回答.

多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.

2.教师肯定学生的表现,并讲解一种特殊形式的多项式与多项式相乘——平方差公式.

二、合作探究

探究点:平方差公式

类型一 直接应用平方差公式进行计算

利用平方差公式计算:

(1)(3x-5)(3x+5);

(2)(-2a-b)(b-2a);

(3)(-7m+8n)(-8n-7m);

(4)(x-2)(x+2)(x2+4).

解析:直接利用平方差公式进行计算即可.

解:(1)(3x-5)(3x+5)=(3x)2-52=9x2-25;

(2)(-2a-b)(b-2a)=(-2a)2-b2=4a2-b2;

(3)(-7m+8n)(-8n-7m)=(-7m)2-(8n)2=49m2-64n2;

(4)(x-2)(x+2)(x2+4)=(x2-4)(x2+4)=x4-16.

方法总结:应用平方差公式计算时,应注意以下几个问题:(1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;(2)右边是相同项的平方减去相反项的平方;(3)公式中的a和b可以是具体的数,也可以是单项式或多项式.

变式训练:见《学练优》本课时练习“课堂达标训练”第1题

类型二 应用平方差公式进行简便运算

利用平方差公式计算:

(1)2013×1923;  (2)×

解析:(1)把2013×1923写成(20+13)×(20-13),然后利用平方差公式进行计算;(2)把×写成(13+)×(13-),然后利用平方差公式进行计算.

解:(1)2013×1923=(20+13)×(20-13)=400-19=39989;

(2)×=(13+)×(13-)=169-=

方法总结:熟记平方差公式的结构并构造出公式结构是解题的关键.

变式训练:见《学练优》本课时练习“课堂达标训练”第13题

类型三 运用平方差公式进行化简求值

先化简,再求值:(2x-y)(y+2x)-(2y+x)(2y-x),其中x=1,y=2.

解析:利用平方差公式展开并合并同类项,然后把x、y的值代入进行计算即可得解.

解:(2x-y)(y+2x)-(2y+x)(2y-x)=4x2-y2-(4y2-x2)=4x2-y2-4y2+x2=5x2-5y2.当x=1,y=2时,原式=5×12-5×22=-15.

方法总结:利用平方差公式先化简再求值,切忌代入数值直接计算.

变式训练:见《学练优》本课时练习“课堂达标训练”第14题

类型四 平方差公式的几何背景

如图①,在边长为a的正方形中剪去一个边长为b的小正形(a>b),把剩下部分拼成一个梯形(如图②),利用这两幅图形的面积,可以验证的乘法公式是______________.

解析:∵左图中阴影部分的面积是a2-b2,右图中梯形的面积是12(2a+2b)(a-b)=(a+b)(a-b),∴a2-b2=(a+b)(a-b),即可以验证的乘法公式为(a+b)(a-b)=a2-b2.

方法总结:通过几何图形面积之间的数量关系可对平方差公式做出几何解释.

变式训练:见《学练优》本课时练习“课堂达标训练”第9题

类型五 平方差公式的实际应用

王大伯家把一块边长为a米的正方形土地租给了邻居李大妈.今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增加4米,继续原价租给你,你看如何?”李大妈一听,就答应了.你认为李大妈吃亏了吗?为什么?

解析:根据题意先求出原正方形的面积,再求出改变边长后的面积,然后比较二者的大小即可.

解:李大妈吃亏了,理由如下:原正方形的面积为a2,改变边长后面积为(a+4)(a-4)=a2-16.∵a2>a2-16,∴李大妈吃亏了.

方法总结:解决实际问题的关键是根据题意列出算式,然后根据公式化简解决问题.

三、板书设计

1.平方差公式

两数和与这两数差的积,等于它们的平方差.即(a+b)(a-b)=a2-b2.

2.平方差公式的运用

学生通过“做一做”发现平方差公式,同时通过“试一试”用几何方法证明公式的正确性.通过这两种方式的演算,让学生理解平方差公式.本节教学内容较多,因此教材中的练习可以让学生在课后完成。

平方差公式【第四篇】

(l)(x+a)(x-a); (2)(m+n)(m-n);

(3)(a+3b)(a-3b); (4)(1-5y)(l+5y).

例3  计算(-4a-1)(-4a+1).

让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演.

解法1:(-4a-1)(-4a+1)

=[-(4a+l)][-(4a-l)]

=(4a+1)(4a-l)

=(4a)2-l2

=16a2-1.

解法2:(-4a-l)(-4a+l)

=(-4a)2-l

=16a2-1.

根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果.解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果.采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷.因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案.

课堂练习

1.口答下列各题:

(l)(-a+b)(a+b); (2)(a-b)(b+a);

(3)(-a-b)(-a+b); (4)(a-b)(-a-b).

2.计算下列各题:

(1)(4x-5y)(4x+5y); (2)(-2x2+5)(-2x2-5);

教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法.

三、小结

《完全平方公式与平方差公式》教学设计【第五篇】

公式

教学目标

1、了解公式的意义,使学生能用公式解决简单的实际问题;

2、初步培养学生观察、分析及概括的能力;

3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

教学建议

一、教学重点、难点

重点:通过具体例子了解公式、应用公式、

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

四、教法建议

1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

教学设计示例

公式

一、教学目标

(一)知识教学点

1、使学生能利用公式解决简单的实际问题、

2、使学生理解公式与代数式的关系、

(二)能力训练点

1、利用数学公式解决实际问题的能力、

2、利用已知的公式推导新公式的能力、

(三)德育渗透点

数学来源于生产实践,又反过来服务于生产实践、

(四)美育渗透点

数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美、

二、学法引导

1、数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点

2、学生学法:观察→分析→推导→计算

三、重点、难点、疑点及解决办法

1、重点:利用旧公式推导出新的图形的计算公式、

2、难点:同重点、

3、疑点:把要求的图形如何分解成已经熟悉的图形的和或差、

四、课时安排

1课时

五、教具学具准备

投影仪,自制胶片。

六、师生互动活动设计

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式、

七、教学步骤

(一)创设情景,复习引入

师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏、

在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题、

板书:公式

师:小学里学过哪些面积公式?

板书:S=ah

(出示投影1)。解释三角形,梯形面积公式

教法说明让学生感知用割补法求图形的面积。

相关推荐

热门文档

22 141465