首页 > 学习资料 > 教学设计 >

三角形的三边关系教学设计精编3篇

网友发表时间 132541

【路引】由阿拉题库网美丽的网友为您整理分享的“三角形的三边关系教学设计精编3篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

《三角形三边的关系》教案教学设计1

一、教学目标

1、探究三角形三边的关系,理解三角形任意两边的和大于第三边;

2、能根据三角形三边的关系解释生活中的现象,提高解决实际问题的能力;

3、积极参与探究活动,获得成功体验,产生学习数学的兴趣。

二、教学重难点

重点:探索三角形三边之间的关系

难点:三角形任意两边的和大于第三边

三、教学过程

Ⅰ、创设情境,引入新课

师:同学们,昨天我们已经认识了三角形,谁能来告诉大家什么是三角形么?

生:由三条线段围成的图形叫做三角形。

师:讲得很好,也就是说三角形是由三条线段所围成的。那么是不是只要有三条线段,我们就一定能围成三角形呢?

生:是(有些答不是)。

师:现在同学们从老师发的5根小棒中选出3根,看看是否能围成三角形?好,开始。(板书:不能围成三角形能围成三角形)

生:摆一摆(上台展示)

师:任取三根小棒,有时能围成三角形,有时却围不成三角形,那么围成与围不成,跟三角形的什么有关系呢?

生:三角形的边。

师:大家回答得很好,三角形的边有什么样的关系呢?这就是我们今天要研究的问题。(板书:三角形边的关系)

Ⅱ、自主探究,提炼规律

师:下面让我们一起来完成这个探究活动,请齐读操作要求,开始!

生:进行实验并完成表格填写(教师进行指导)

组别小棒的长度能否围成三角形两边之和与第三边的大小关系

13583+5○8;3+8○5;5+8○3

245104+5○10;4+10○5;5+10○4

33453+4○5;3+5○4;4+5○3

458105+8○10;5+10○8;8+10○5

师:坐好。大家认为有哪几组是围不成三角形的呢?

生:前两组。

师:让我们一起来看看

生1,你发现的两边之和与第三边的关系是什么?

生1:3+5=8,3+8>5,5+8>3(课件展示:3、5、8,围不成)

师:很棒,我们继续来看第2组

生2,你发现了什么?(教师手指两边之和与第三边的关系)

生2:4+5<10,4+10>5,5+10>4(4,5,10,围不成)

师:为什么这两组的小棒围不成三角形呢?

生:3+5=8,4+5<10(或有两条边的长度的和没有第三条边长)

师:说得很好,也就是说两边之和小于或等于第三边,所以这三根小棒围不成三角形。(板书:两边的和≤第三边)

师:那围成三角形的就是3、4组了,对吧?

生:对。

师:生3,你发现的两边之和与第三边的关系是什么?

生3:3+4>5,3+5>4,4+5>3看第三组的课件演示(3、4、5,围成)

师:这个呢?

生3:能围成,5+8>10,5+10>8,8+10>5

师:回答得非常棒,大家试一试将3、4组与1、2组进行对比,为什么组能围成三角形?

生:它3个都是大于的(有些同学会回答:两边的和比第三条边大)。

师:那也就是说围成三角形是两边的和大于第三边(板书:两边的和>第三边?)

师:这个有问题么,大家看看屏幕,1、2组也有两边的和大于第三边呀?

生:都大于。

师:对!必须强调每组都是,即是“任意”,我们把它表示为:任意两边的和大于第三边。(板书:擦去?,补任意)

师:我们发现的规律就出现在课本的82页,大家把它画起来。(5秒)齐读。

生:三角形的任意两边之和大于第三边。(板书:三角形的任意两边之和大于第三边)

Ⅲ、巩固应用,变式提升

例判断下列三条线段是否能围成三角形?

(1)6,7,8(2)4,5,9(3)3,6,10

(学生先用三条式子来判断是否能围成三角形,教师再让学生讨论交流好方法)

通过比较任意两边之和是否大于第三边,来判断是否可以围成三角形。

教师指导学生:将两条短的边相加与最长的边相比,如果大于,就能围成三角形。

1、判断以下几组小棒能否围成三角形,能的打“√”,不能的打“×”,并说明理由。

(1)3cm4cm5cm()

(2)3cm3cm3cm()

(3)2cm2cm6cm()

(4)3cm3cm5cm()

注:学生学会将两条短的边相加与最长的边相比,如果大于,就能围成三角形,从而提高做题速度。

2、生活中的数学

3、巩固提升

小明想要给他的小狗做一个房子,房顶的框架是三角形的,其中一根木条是3分米,另一根是5分米。

(1)第三根木条可以是多少分米?(取整数)

(2)第三边的木条的长度是a分米,那么a的取值范围是()

四、回忆新知,归纳总结

师:通过本节课的学习,你收获了什么?

生:三角形任意两边之和大于第三边。(等等)

五、板书设计

三角形边的关系

不能围成三角形能围成三角形

两边之和≤第三边任意两边之和>第三边

三角形任意两边之和大于第三边

读书破万卷下笔如有神,以上就是差异网为大家整理的3篇《三角形的三边关系教学设计》,希望对您有一些参考价值,更多范文样本、模板格式尽在差异网。

角形边的关系教案2

教学目标

1、使学生理解三角形的定义,掌握三角形的特征和特性。

2、知道三角形高和底的含义,会在三角形内画高。

3、通过观察和操作,培养学生比较、概括、判断、推理的能力并发展学生空间观念,实现知识和技能的正迁移,让学生做到活学活用。

教学重点

使学生掌握。

教学难点

学会给三角形画高。

教具

三角板一套、多媒体课件

教学过程

一、课前预习

1、三角形的含义是什么?

2、三角形的特征和特性是什么?

3、怎样画三角形的高?

二、展示交流

1、动手操作:用四边形、三角形撑起两个支架,然后对比、观察,发现了什么结论?

2、课件出示电线杆、自行车图片,体会三角形的稳定性。

3、列举生活中应用三角形稳定性的例子。

4、提示课题:三角形的认识

三、探究活动,掌握特征

1、理解三角形的含义

①通过实物演示和出示课件,总结:什么叫三角形?

②学生自己画一个三角形。

2、探究三角形的特征

(1)课件演示,说出三角形各部分名称。(边、顶点和角)

(2)课件出示三个三角形,观察这三个三角形,你还性理了什么?

(3)动手画一个三角形,标出顶点、边和角。

(4)用字母ABC表示三角形。

3、认识三角形的底和高

(1)课件出示三角形屋顶的房子和斜拉桥,你能想出办法测量三角形的房顶和斜拉桥的高度吗?

(2)课件演示,抽象出三角形,学生作反馈测量方法,引出三角形高和底的含义。

(3)出示有一组底和高的三角形,观察、讨论,还有其它的底和高吗?

(4)完成教材第86页练习十四第1题

四、检测反馈

1、填空

①三角形是由()条边同()个顶点,()个角组成的。

②三角形具有()性。

③三角形有()条高,有()个底。

2、判断

(1)由三条线段组成的图形是三解形。()

(2)三角形有三条高,三个底。()

(3)自行车车架运用了三角形的稳定性原理。()

3、画出这个三角形的三条高。

四、板书设计

三角形的认

稳定性由三条线段围成的图形叫做三角形

教后反思:本节课的概念比较多.学生在学习这本课的时候,对于画高,有个别同学画得不对,可见是以前学习画垂线的时候,掌握得不太好.在今后,应该多加练习.

角形的三边关系教学设计3

一、教学目标

1、掌握梯形、等腰梯形、直角梯形的有关概念。

2、掌握等腰梯形的两个性质:等腰梯形同一底上的两个角相等;两条对角线相等。

3、能够运用梯形的有关概念和性质进行有关问题的论证和计算,进一步培养学生的分析能力和计算能力。

4、通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想

二、教法设计

小组讨论,引导发现、练习巩固

三、重点、难点

1、教学重点:等腰梯形性质。

2、教学难点:解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线)。

四、课时安排

1课时

五、教具学具准备

多媒体,小黑板,常用画图工具

六、师生互动活动设计

教师复习引入,学生阅读课本;学生在教师引导下探索等腰梯形的性质,归纳小结梯形转化的常见的辅助线

七、教学步骤

复习提问

1、什么样的四边形是平行四边形?平行四边形有什么性质?

2、小学学过的梯形是什么样的四边形。

(让学生动手画一个梯形,并找3名同学到黑板上来画,并指出上、下底和腰,然后由学生总结出梯形的概念)。

引入新课(板书课题)

梯形同样是一个特殊的四边形,与平行四边形一样,它也有它的特殊性,今天我们就重点来研究这个问题。

1、梯形及梯形的有关概念

(l)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形。

(2)底:平行的一组对边叫做梯形的底(通常把较短的底叫上底,较长的底叫下底)。

(3)腰:不平行的一组对边叫做梯形的腰。

(4)高:两底间的距离叫做梯形高。

(5)直角梯形:一腰垂直于底的梯形。

(6)等腰梯形:两腰相等的梯形。

(以上这一过程借助多媒体或投影仪演示)

提醒学在注意:

①梯形与平行四边形同属于特殊的四边形,因为它们具有不同的特殊条件,所以必然有不同的性质。

②平行四边形的`对边平行且相等,而梯形中,平行的一组对边不能相等(让学生想一想,为什么不能相等)。

③上、下底的概念是由底的长短来定义的,而并不是指位置来说的。

2、等腰梯形的性质

例1如图,在梯形中,,,求证:。

分析:我们学过“等腰三角形两底角相等”,如果能将等腰梯形在同一底上的两个角转化为等腰三角形的两个底角,问题就容易解决了。

证明:(略)

由此得出等旧梯形的性质定理:等腰梯形在同一高上的两个角相等。

例2如图,求证:等腰梯形的两条对角线相等。

已知:在梯形中,,,求证:。

分析:要证,只要用等腰梯形的性质定理得出,然后再利用,即可得出。

证明过程:(略)。

由此得到多腰梯形的第一条性质:等腰梯形的两条对角线相等。除此之外,等腰梯形还是轴对称图形,对称轴是过两底中点的直线。

3、解决梯形问题常用的方法

在证明梯形性质定理时,我们采取的方法是过点作交于,从而把梯形问题转化成三角形来解,实质上是相当于把采取平行移动到的位置,这种方法叫做平行移动(也可移对角线),这是解决梯形问题常用的方法之—(让学生想一想,还可以用什么样的方法作辅助线来解决梯形问题,多找几名学生回答,然后教师总结,可借助多媒体演示见图)。

(1)“作高”:使两腰在两个直角三角形中。

(2)“移对角线”:使两条对角线在同一个三角形中。

(3)“延腰”:构造具有公共角的两个等腰三角形。

(4)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形。

综上所述:解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决。

总结、扩展

小结:(以提问的方式总结)

(1)梯形的有关概念。

(2)梯形性质(①-③)。

(3)解决梯形问题的基本思想和方法。

(4)解决梯形问题时,常用的几种辅助线。

相关推荐

热门文档

22 132541