认识一元一次方程教学设计实用3篇
【阅读指引】阿拉题库网友为您分享整理的“认识一元一次方程教学设计实用3篇”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
认识一元一次方程(教学设计1
北师大版七年级数学上册第五章
认识一元一次方程
卫城中学
罗艳琴
一、教材分析
1、教材的地位与作用
《认识一元一次方程》是在学生学习了有理数的运算、代数式的基础上接触有关方程的知识,是中学阶段应用数学知识解决实际问题的开端,也是今后学习一次方程组、一元二次方程、分式方程解决实际问题的基础,是学生体会数学价值观、增强学数学、用数学意识的重要题材.
本课内容设计切合学生兴趣的问题情境,从而激发学生的好奇心和主动学习的欲望,主动探究情境中包含的等量关系,体会方程是刻画实际问题的一个有效的数学模型.
2、教学目标
本节课依据新课程的基本理念和数学课程标准的基础要求,数学教学不仅仅使学生掌握必备的基础知识和基本技能,更应培养学生的抽象思维和推理能力、培养学生的创新意识和实践能力、促进学生在情感态度和价值观等方面的发展,因此根据本节课在教材中的地位和作用,确定本节课的目标如下:
知识技能:根据问题情境寻找等量关系,根据等量关系列出方程,能够分析归纳出一元一次方程的定义.
数学思考:本节课提取学生切身体会的例子,渗透了数学建模思想和归纳、化归等数学思想方法.
问题解决:能根据具体问题的数量关系列出方程并归纳出一元一次方程的定义,培养学生获取信息,分析问题,处理问题的能力.
情感态度:在探究新知识的活动中,培养学生学习数学的好奇心和求知欲,激发学生学数学、爱数学、用数学的情感,同时通过小组合作增进师生情感.
3、教学重难点
重点:建立一元一次方程的概念。
难点:根据具体问题中的等量关系,列出一元一次方程,感受方程作为刻画现实世界有效模型的意义。
二、学情分析
七年级的学生好奇心强、注意力易分散、爱发表自己的见解、有比较强烈的自我发展意识,对与自己的直观经验相冲突的现象,教师只有进行诠释方可得到学生的认可,他们在小学已经习惯了列算式解应用题.本节课在学生没有体会运用方程建模的优越性之前,只能通过比较算式法与方程解法的优劣来引出方程建模思想,提升学生运用方程建模的自觉性和实效性.
三、教学策略分析
1、为了让学生参与到知识形成的全过程,本节课将采取“创设问题情境---自主探究---建立数学模型---解释、应用与拓展”的过程.以实际问题为主线贯穿整个教学,强调对具体问题的分析,抽象渗透数学建模思想,选用贴近学生生活和具有时代气息的问题、习题,激发学生的兴趣.
2、给学生提供探索和交流的空间,使整个数学活动生动活泼,是一个主动和富有个性的学习过程.
3、借助多媒体辅助教学,通过有色彩、有动感的画面,提高学生学习数学的兴趣,提高课堂效果.
四、教学过程
七年级的学生好奇心强、注意力易分散,一方面要用生动、形象的图片来激发学生的学习兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性,培养学生的团队精神,让学生从被动学到主动学、从个人学习到合作交流、从接受知识到探索知识.给学生一个问题,让他们自己去找答案;给学生一个条件,让他们自己去锻炼;给学生一点时间,让他们自己去安排;给学生一点空间,让他们自己往前走;给学生一个机会,让他们自己把握.本着这种新理念,我将本节课设计成以下五个环节:
《一》激发情趣,快乐学习
通过刘谦变牌视频吸引学生的注意力和好奇心,并师生合作游戏:
1.一位同学从牌中抽出一张牌,展示给全班看,并用牌面数字乘2再加5报出得数,教师从中找出牌来.
2.(课件展示)教师从牌中抽出一张牌,也用牌面数字乘2再加5得27,学生猜出牌面数字是“11” .
问题:你是怎么得到的? 学生回答:方法1:(275)211;
学生回答:方法2:设牌面数字为x,则2x527,得到x11. 问题:两种方法得出的两个等式有什么区别?
师生共同总结:像这样含有未知数的等式叫做方程,并指出判断方程应具备的两个条件:①等式;②含有未知数.
设计意图:当学生看到自己所学的知识与现实世界息息相关时,学生通常会更主动.
问题:刚才得出牌面数字是11,把x11代入方程2x527,左边的值与右边的值相等吗?(学生回答:相等)
师生共同总结:使方程左右两边的值相等的未知数的值叫方程的解. 设计抢答题:①x2是方程2x4的解吗?
②x3是方程2x18的解吗?
设计意图:加深“方程的解”定义的理解,为今后解方程检验起到铺垫作用,同时抢答能活跃气氛. 《二》.小组合作,探究学习
情境一:小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高约15厘米,大约几周后树苗长高到1米?(只列方程)
问题:上面的问题中包含哪些已知量、未知量和等量关系?
学生回答:已知量:数苗开始的高度、将来的高度、每周长高的高度。
未知量:周数(长高的高度)
等量关系:树苗开始的高度+长高的高度=树苗将达到的高度.
问题:等量关系中有已知量、未知量,未知量用什么表示呢?
学生回答:字母x表示,即设x周后达到1米,则可列出方程: 4015x100 问题:根据情境列方程的关键是什么?一般步骤是什么?此问题学生不一定能回答到,教师引导回答,这是为后面环节做好铺垫.
设计意图:以问题串的形式出现,让学生体会到列方程的关键及一般步骤.
情境二:某种足球现价200元,比原价上涨了15%,请问原价为多少元?(只列方程)
学生小组合作讨论完成,并在学案上做出答案. 解答:设原价为x元,由题意得:(115%)x200
设计意图:学生小组合作完成该题,让学生熟练列方程的一般步骤.
情境三:某长方形操场的周长是400m,长比宽之多50m,这个操场的长与宽分别是多少米(只列方程).
如果设这个操场的宽为xm,那么长为(x+50)m,由此可得到方程:
2(x+x+50)=400(课件展示)议一议:
1、以上情境中,根据题意列出方程的关键是什么?一般步骤是什么?
关键:找等量关系
一般步骤:①找等量关系;②设未知数,用字母表示;③列出方程.
设计意图:让学生体会到列方程的关键与一般步骤,不仅解决了本节的难点,也为今后的学习奠定了基础.
5102、几个情境得到方程:2x527
401x 0x)
(115%2 0
2(x+x+50)=400 问:这几个方程的共同特征是什么?
学生讨论归纳出一元一次方程的定义:在一个方程中只含有一个未知数(元),并且未知数的指数是1(次),这样的方程叫做一元一次方程. 引入课题:第五章
一元一次方程
认识一元一次方程
设计意图:学生通过讨论归纳出一元一次方程的定义,不仅能加深对一元一次方程定义的理解和掌握,也能培养学生的观察、归纳、总结的能力,至此也解决了本节课的重点.
《三》.挑战自我,拓展学习 一.填空:
1.在下列方程中:①2x13;②y22y10;③2ab3;④26y1; ⑤2x256;属于一元一次方程有;
2.方程3xm250是一元一次方程,则代数式m_
_ . 二.根据条件,列方程:
1.某数x的相反数比它的2.一个数的3大1. 41与3的差等于最大的一位数. 73.甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共比赛了10场,甲保持了不败的记录,一共得了22分。甲队胜了多少场?
设计意图:通过练习巩固本节课重难点. 《四》.归纳总结,收获学习
1.方程的概念与方程解的概念; 2.一元一次方程的概念; 3.列方程的一般步骤:
(1)关键找等量关系;
(2)设未知数,用字母表示;
(3)列出方程。《五》.布置作业,巩固学习
1.习题
2.请根据方程2x+3=21自己设计一道有实际背景的应用题; 3.思考题:《代数之父—丢番图的年龄》
1希腊数学家丢番图(公元3~4世纪)的墓碑上记载着:“他生命的是幸福的童年;再活
611了他生命的,两颊长起了细细的胡须;又度过了一生的,他结婚了;再过5年,他有127了儿子,感到很幸福;可是儿子只活了他全部年龄的一半;儿子死后,他在极度痛苦中度过了4年,与世长辞了。”则他的年龄是多少?
设计意图:作业1的布置是为了巩固本节课的基础知识点;作业2的布置是让学生更好地发挥自己的想象,将数学应用到与自己相关的事件中去,将本节课的学习上升到更高的一个台阶;作业3的设计师针对学有余力的学生,不仅能提高他们的分析、解题能力,也是了解数学相关历史的一个机会!
元一次方程教学设计2
一、教学目标
知识与技能
1、理解一元一次方程,以及一元一次方程解的概念。
2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。
3、掌握检验某个数值是不是方程解的方法。
过程与方法
在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。
情感态度和价值观
让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。
二、教学重点
建立一元一次方程的概念,寻找相等关系,列出方程。
三、教学难点:根据具体问题中的相等关系,列出方程。
四、教学准备:多媒体教室,配套课件。
五、教学过程:
1。游戏导入,设置悬念
师:同学们,老师学会了一个魔术,情你们配合表演。请看大屏幕,这是20xx年10月的日历,请你用正方形任意框出四个日期,并告诉老师这四个数字的和,老师马上就告诉你这四个数字。
生1:24,
师:2,3,9,10
生2:84
师:17,18,24,25
师:同学们想学会这个魔术吗?
生:想!
师:通过这节课的学习,同学们一定能学会。
2。突出主题,突出主体
(1)师:看大屏幕,独立思考下列问题,根据条件列出式子。
A、 x的2倍与3的差是5
B、长方形的的长为a,宽比长少5,周长为36,则=36
C、 A、B两地相距180千米,甲乙两车分别从A、B两地出发,相向而行,甲车每小时行驶30千米,乙车得速度是甲车速度的倍,经过t小时相遇,则=180
生:(1)2x—3=5(2)2(a+a—5)=36(3)30t+(30t)=180
师:这些式子小学学习过,它们是()?
生:方程。
师:对,含有未知数的等式叫做方程,等号的两边分别叫做方程的左边和右边。(现实,学生齐读)
2、师:小学我们学过简易方程,并用简易方程解决应用题,对于比较复杂的实际应用题,用方程解答起来更加方便。请自己阅读课本P/79—81,(课本内容略)并把课本空空填写完整,不懂的和你的同学交流。还要回答下列问题:
(1)你是如何理解“列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程”?
(2)什么叫一元一次方程?
(3)什么是的解?你找到验证的方法吗?
师:在阅读P/80例题1时老师做出友情提示:
(1)选择一个未知数x
(2)对于这三个问题,分别考虑:
用含x的未知数分别表示正方形的边长;
用含x的未知数表示这台计算机的检修时间;
用含x的未知数分别表示男、女生人数。
(3)找一个问题中的相等关系列出方程,学生讨论出上述答案后
师:大屏幕显示上述问题的答案
三、体现新时代教师是学生学习的合作者
在大多数学生完成课本阅读和解答好课本问题、上述问题的基础上,请几名代表学生汇报所列方程,并解释方程等号左右两边式子的含义。
师:(强调)
(1)方程两边表示的是同一个数;
(2)左右两边表示的方法不同。
这一小小的点拨,有画龙点睛之作用,突出方程的实质性含义,为以后列出更复杂的方程打下基础
四、给学生一个展示自己精彩的舞台
师:本节知识也学完了,你能解释课前老师魔术中的几多秘密?
设任意框出的四个数字的第一个为x,则:
生1:x+(x+1)+(x+7)+(x+8)=24;
生2:x+(x+1)+(x+7)+(x+8)=84
师:很好!如何算出x的值,是我们下一节课要探讨的问题(继续设疑,激发学生的学习兴趣),但老师想当堂检测一下谁掌握的最多,最好,请看大屏幕。
五、基础巩固与知识延伸
(1)基础练习见同步练习册
(2)拓展练习如下;
1、下列四个式子中,是一元一次方程的是()
A、1+2+3+4>8
B、2x3
C、x=1
D、||=
2、已知关于x的方程ax+b=c的解是x=1,则=
3、下面有四张卡片,请你至少抽出三张卡片编写两道一元一次方程,并和你的同学交流一下,看看你和谁不谋而合!
六、小结作业
元一次方程教学设计3
一、教学目标:
1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、通过观察,归纳一元一次方程的概念
3、积累活动经验。
二、重点和难点
重点:归纳一元一次方程的概念
难点:感受方程作为刻画现实世界有效模型的意义
三、教学过程
1、课前训练一
(1)如果 || = 9,则 = ;如果 2 = 9,则 =
(2)在数轴上距离原点4个单位长度的数为
(3)下列关于相反数的说法不正确的是( )
A、两个相反数只有符号不同,并且它们到原点的距离相等。
B、互为相反数的两个数的绝对值相等
C、0的相反数是0
D、互为相反数的两个数的和为0(字母表示为 、 互为相反数则 )
E、有理数的相反数一定比0小
(4)乘积为1的两个数互为 倒数 ,如:
(5)如果 ,则( )
A、 互为倒数
B、互为相反数
C、都是0
D、至少有一个为0
(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过 周后树苗长高到1米,依题意得方程
2、由课本P149卡通图画引入新课
3、分组讨论P149两个练习
4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为 米,那么长为( +25)米,依题意可列得方程为:( )
A、 +25=310 B、 +( +25)=310 C、2 =310 D、 2=310
课本的宽为3厘米,长比宽多4厘米,则课本的面积为 平方厘米。
5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回元。已知每个笔记本比练习本贵元,求每个练习本多少元?
解:设每个练习本要 元,则每个笔记本要 元,依题意可列得方程:
6、归纳方程、一元一次方程的概念
7、随堂练习PO151
8、达标测试
(1)下列式子中,属于方程的是( )
A、 B、 C、 D、
(2)下列方程中,属于一元一次方程的是( )
A、 B、 C、 D、
(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?
解:设甲队胜了 场,则平了 场,依题意可列得方程:
解得 =
答:甲队胜了 场,平了 场。
(4)根据条件“一个数 比它的一半大2”可列得方程为
(5)根据条件“某数 的 与2的差等于最大的一位数”可列得方程为
四、课外作业P151习题