首页 > 学习资料 > 教学设计 >

《倍数和因数》教学设计【精选4篇】

网友发表时间 496966

【路引】由阿拉题库网美丽的网友为您整理分享的“《倍数和因数》教学设计【精选4篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

《因数与倍数》小学教案【第一篇】

学习内容:

人教版小学数学五年级下册第17、18页。

学习目标:

1、我能掌握2、5的倍数的特征,并利用特征判断一个数是不是2、5的倍数。

2、我知道什么是奇数和偶数。

学习重点:

了解2、5的倍数的特征及奇数和偶数的含义。

学习难点:

能正确地求出符合要求的数。

学前准备:

收集电影票。

教学过程:

一、导入新课

二、检查独学

1、互动,检查独学部分第1、2题完成情况。

2、质疑探讨。

三、合作探究

(一)2、5的倍数的特征

1、小组合作。

仔细回顾独学题2,再与同伴分享自己的收获。

2、小组代表展示汇报。

3、小组合作交流,验证规律。

讨论:是不是所有2的倍数个位上都是0、2、4、6、8?所有5的倍数个位上都是5或0呢?

我们的想法:

小组代表汇报、总结。

4、试试身手。

(1)独立完成第18页“做一做”。

(2)集体交流。我又发现了 :

(二)奇数和偶数

1、自主阅读教材。根据自学内容,我知道:

根据是否是2的倍数,可把自然数分为 和 两类。是2的倍数的数叫做 ,不是2的倍数的数叫做 。

2、组内交流,并讨论:0是不是2的倍数?为什么?

3、汇报总结。

4、我能说出身边的奇数和偶数。

5、做一做(第17页)。

《倍数和因数》教学设计【第二篇】

教学内容

人教版数学五年级下册P12一14,练习二。

教学过程

一、操作空间,初步感知。

1、同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。

2、学生动手操作,并与同桌交流摆法。

3、请用算式表达你的摆法。

汇报:1×12=12,2×6=12,3×4=12。

评析通过让学生动手操作、想象、表达等环节,既为新知探索提供材料,又孕育求一个数的因数的思考方法。

二、探索空间,理解新知。

1、理解因数和倍数。

(1)观察3×4=12,你能从数学的角度说说它们之间的关系吗? 师根据学生的表达完成以下板书: 3是12的因数 12是3的倍数 4是12的因数 12是4的倍数 3和4是12的因数 12是3和4的倍数

(2)用因数和倍数说说算式1×12=12,2×6=12的关系。

(3)观察因数和倍数的相互关系。揭示:研究因数和倍数时,所指的数是整数(一般不包括O)。

2、求一个数的因数。

(1)出示2,5,12,15,36。从这些数中找一找谁是谁的因数。 学生汇报。

师:2和12是36的因数,找1个、2个不难,难就难在把36所有的因数全部找出来,请同学们找出36的所有因数。

出示要求:

①可独立完成,也可同桌合作。

②可借助刚才找出12的所有因数的方法。

③写出36的所有因数。

④想一想,怎样找才能保证既不重复,又不遗漏。 教师巡视,展示学生几种答案。

生1:1,2,3,4,9,12,36。

生2:1,36,2,18,3,12,4,9,6。

生3:1,4,2,36,9,3,6,12,18。

(2)比较喜欢哪一种答案?为什么?

用什么方法找既不重复又不遗漏。(按顺序一对一对找,一直找到两个因数相差很小或相等为止)

师:有序思考更能准确找出一个数的所有因数。 完成板书:描述式、集合式。

(3)30的因数有哪些?

评析学生围绕教师出示的思考步骤,寻找36的所有因数。既留足了自主探索的空间,又在方法上有所引导,避免了学生的盲目猜测。通过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。

3、求一个数的倍数。

(1)3的倍数有:——,怎样

有序地找,有多少个?

找一个数的倍数,用1,2,3,4?分别乘这个数。 (2)练一练:6的倍数有: ,40以内6的倍数有:一o

评析

由于有了有序思考的基础,求一个数的倍数水到渠成,本环节重在思考方法上的提升。

4、发现规律。

观察上面几个数的因数和倍数的例子,你对它们的最大数和最小数有什么发现? 根据学生汇报,归纳:一个数的最小因数是I,最大因数是它本身;一个数的最小倍数是它本身,没有最大的倍数。

评析

通过观察板书上几个数的因数和倍数,放手让学生发现规律,既突出了学生的主体地位,又培养了学生观察、归纳的能力。 三、归纳空间,内化新知。

师生共同总结:

(1)因数和倍数是相互的,不能单独存在。

(2)找一个数的因数和倍数,应有序思考。

四、拓展空间,应用新知。

1、15的因数有:——,15的倍数有:——。

2、判断。

(1)6是因数,24是倍数。( )

(2)÷4=,所以是4的因数。 ( )

(3)1是1,2,3,4?的因数。 ( )

(4)一个数的最小倍数是21,这个数的因数有1,5,25。( )

3、选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话。

4、举座位号起立游戏。

(1)5的倍数。

(2)48的因数。

(3)既是9的倍数,又是36的因数。

(4)怎样说一句话让还坐着的同学全部起立。

评析

本环节的前3题侧重于巩固新知,后2题侧重于发展思维。通过“说一句话”和“起立游戏”,展现了学生的个性思维,体现了知识的应用价值。

反思

本课教学设计重在让学生通过自主探索,掌握求一个数的因数和倍数的方法,体验有序思考的重要性。体现了以下两个特点: 一、留足空间,让探索有质量。

留足思维空间,才能充分调动多种感官参与学习,充分发挥知识经验和生活经验,使探索成为知识不断提升、思维不断发展、情感不断丰富的过程。第一,把教材中的飞机图改为拼长方形,让同桌同学借助12块完全一样的正方形拼成一个长方形。由于方法的多样性,为不同思维的展现提供了空间。第二:放手让每个同学找出36的所有因数,由于个人经验和思

维的差异性,出现了不同的答案,但这些不同的答案却成为探索新知的资源,在比较不同的答案中归纳出求一个数的因数的思考方法。第三:通过观察12,36,30的因数和3,6的倍数,你发现了什么?由于提供了丰富的观察对象,保证了观察的目的性。第四:让学生“选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话”。不拘形式的说话空间,不仅体现了差异性教学,更是体现了不同的人在数学上的不同发展。 二、适度引导,让探索有方向。

引导与探索并不矛盾,探索前的适度引导正是让探索走得更远。探索12块完全一样的正方形拼成一个长方形,有几种拼法?教师提示能想象的就想象,不能想象的可借助小正方形摆一摆。这样的引导,是尊重学生不同思维的有效引导。

在找36的所有因数时,教师出示4条要求,既是引导学生思考的方向,又是提醒学生探索的任务。在让学生观察几个数的因数和倍数时,引导学生观察最大数和最小数,有什么发现?这样的引导,避免了学生的盲目观察。可见,适度的引导,保证了自主探索思维的方向性和顺畅性。

整堂课,学生想象丰富、思维活跃、思考有序。整个认知过程是体验不断丰富、概念不断形成、知识不断建构的过程。

《因数与倍数》小学教案【第三篇】

教学目标:

1、 从操作活动中理解因数与倍数的意义,会判断一个数不是另一个数的因数或倍数。

2、培养学生抽象、概括与观察思考的能力,渗透事物之间相互联系,相互依存的辨证唯物主义观点。

3、培养学生的合作意识、探索意识,以及热爱数学学习的情感。

教学重点:

理解因数和倍数的意义

教学难点:

因数和倍数等概念间的联系和区别。

教学过程:

一、认识因数与倍数,预习反馈

1、反馈主题图,根据主题图的不同情况写出乘法算式和除法算式。

反馈:

1×12=122×6=123×4=1212×1=126×2=124×3=1212÷1=1212÷2=612÷3=412÷12=112÷6=212÷4=3

2、观察并回答。

(1)这三组乘法、除法算式中,都有什么共同点?

(2)像这样的乘除法算式中的三个数之间还有另一种说法,你想知道吗?

(3)这样的三个数,我们也可以怎样说?(2和6是12的因数),请大家也像这样把其余的两组数也说一说。

请看教材12页,2和6与12的关系还可以怎么说?

(4)也就是说2和6与12的关系是因数和倍数的关系,这几组数中,谁和谁还有因数和倍数的关系?

(5)提问:能不能说12是12的因数呢?

(6)小结:上面这三组算式中,我们知道:1、2、3、4、6、12都是12的因数。

3.讨论:23÷4=5……3,提问:23是4的倍数吗?为什么?

谁能举一个算式例子,并说说谁是谁的倍数,谁是谁的因数?

4.讨论:0×3 0×10 0÷3 0÷10

提问:通过刚才的计算,你有什么发现?

5.注意:(1)为了方便,在研究因数和倍数的时候,我们所说的数一般指的是整数,但不包括0。(2) 这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式名称的“因数”,两者不能搞混淆。

二、巩固新知

1.下面每一组数中,谁是谁得因数,谁是谁得倍数?

16和2 4和24 72和8 20和5

2.下面得说法对吗?说出理由。

(1)48是6的倍数

(2)在13÷4==3……1中,13是4的倍数

(3)因为3×6=18,所以18是倍数,3和6是因数。

3.在36、4、9、12、3、0这些数中,谁和谁有因数和倍数关系。

4、完成P15第2题

学生自己独立完成,讲评时让学生说一说,是怎么想的?

三、思维训练

1、判断

(1)12的因数有:1、2、3、4、6、12。

(2)整数32的因数共有4个。

(3)自然数a的最大因数是a,最小因数是1。

(4)一个数的因数都小于这个数。

2.游戏。记住自己的学号,听老师说要求,符合要求的同学请举手。

(1)( )是4的倍数 (2)( )是60的因数

(3)( )是5的倍数 (4)( )是36的因数

四、课后小结:

五、 布置作业

《倍数与因数》教案【第四篇】

教学目标:

1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。2、培养同学自主探索、独立考虑、合作交流的能力。

3、培养同学敢于探索科学之谜的精神,充沛展示数学自身的魅力。

教学重点:

1、理解掌握质数、合数的概念。

2、初步学会准确判断一个数是质数还是合数。

教学难点:区分奇数、质数、偶数、合数。

教学过程:

一、探究发现,总结概念:

1、师:(出示三个同样的小正方形)每个正方形的边长为1,用这样的三个正方形拼成一个长方形,你能拼出几个不同的长方形?

同学独立考虑,然后全班交流。

2、师:这样的四个小正方形能拼出几个不同的长方形?

同学各自独立考虑,想像后举手回答。

3、师:同学们再想一下,假如有12个这样的小正方形,你能拼出几个不同的。长方形?

师:我看到许多同学不用画就已经知道了。(指名说一说)

4、师:同学们,假如给出的正方形的个数越多,那拼出的不同的长方形的个数——,你觉得会怎么样?

同学几乎是异口同声地说:会越多。

师:确定吗?(引导同学展开讨论。)

5、师:同学们,用小正方形拼长方形,有时只能拼出一种,有时拼出的长方形不止一种。你觉得当小正方形的个数是什么数的时候,只能拼一种? 什么情况下拼得的长方形不止一种?并举例说明。

先让同学小组讨论,然后全班交流,师根据同学的回答板书。

师:同学们,像上面这些数(板书的3、13、7、5、11等数),在数学上我们把它们叫做质数,下面的这些数(4、6、8、9、10、12、14、15等数)我们把它们叫做合数。那究竟什么样的数叫质数,什么样的数叫合数呢?

同学独立考虑后,在小组内进行交流,然后再全班交流。

引导同学总结质数和合数的概念,结合同学回答,教师板书:(略)

6、让同学举例说说哪些数是质数,哪些数是合数,并说出理由。

7、师:那你们认为“1”是什么数?

让同学独立考虑,后展开讨论。

二、动手操作,制质数表。

1、师出示:73。让同学考虑着它是不是质数。

师:要想马上知道73是什么数还真不容易。假如有质数表可查就方便了。(同学们都说“是呀”。)

师:这表从哪来呢?

(教师出示百以内数表)这上面是1到100这100个数,它不是质数表,你们能不能想方法找出100以内的质数,制成质数表?谁来说说自身的想法?(让同学充沛发表自身的想法。)

2、让同学动手制作质数表。

3、集体交流方法。

三、练习巩固:

完成练习四第1、2题。

四、课题小结:

这节课你在激烈的讨论中有什么收获?

相关推荐

热门文档

22 496966