可能性教学设计(汇总4篇)
【路引】由阿拉题库网美丽的网友为您整理分享的“可能性教学设计(汇总4篇)”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
《可能性》教学设计【第一篇】
教材分析
在三年级的学习中,学生已经认识了可能性的大小,在四年级的学习中,他们又认识了等可能性,而本学期所学的概率知识主要是用分数表示可能性的大小,所以说,本学期所学的内容是在前两个年级的基础上的一个延伸与发展。教材在呈现本专题的内容时分为三个部分:首先呈现了提供给学生开展试验活动的材料,通过学生的试验进一步体会摸出一个球颜色的可能性的大小;其次呈现了“想一想”的内容,通过讨论第1盒与第2盒摸球的结果,将描述可能性的语言“不可能”与“一定能”转化为数据表示,即客观事件中“不可能”出现的现象用数据表示为“可能性是0”,客观事件中“一定能”出现的现象用数据表示为“可能性是1”,通过这种描述语言转化为数据表示的过程,为学生后续用分数表示可能性作了铺垫;再次呈现了“说一说”的内容。由于学生已有前面的基础,在“说一说”的过程中,将重点讨论第3盒与第4盒摸球结果的表述方法,即用分数的形式,具体地表述可能性大小的结果。
教学策略分析
在教学活动中,根据教材呈现的内容及学生的实际情况拟安排以下教学的程序。
一是在实验操作中,复习可能性大小的认识,同时通过这个实验操作起到激发学生学习兴趣及导入课题的作用。在三、四年级,学生已经有了可能性大小的认识,所以在导入新授的阶段,教师组织学生进行“摸球比赛”活动。本活动按“摸球比赛——猜想——验证——导入”的活动过程,让学生可从活动中体验出可能性是有大有小的,从而导入课题。并以此活动为后续教学埋下伏笔,当然还起到一个激发学生学习热情的作用。
二是探究如何将“不可能”、“一定能”、“可能”等描述性语言转化为数据表示。学生通过自己的探究及全班同学的合理筛选后,得出像第1盒这种不可能摸出白球的,可以表示为摸出白球的可能性是0,而像第3盒这种一定能摸出白球的,可以表示为摸出白球的可能性是1。接着,教师可趁热打铁,让学生用“可能性是0”和“可能性是1”来说明生活中的不可能事件和必然事件。之后,教师把重点放在探究第2盒这种可能摸出白球的情况,可用什么数据来表示合适?这是本课的重点也是难点。最后让学生在思辨中得出可用分数来表示可能性的大小。
三是通过一定的练习让学习会用数来表示事件发生的可能性大小。这个练习重点放在不确定事件的发生的可能性大小上,且练习的要求是逐层提高,以让不同的学生能有不同层次的发展。
教学内容:北师版五年级上册第87页内容 摸球游戏
教学目标:
1、通过试验操作活动,进一步认识客观事件发生的可能性大小。
2、能用适当的数表示事件发生的可能性大小 。
教学重难点:
重点:会用数表示可能性的大小。
难点:会用数表示可能性的大小。
课前准备:
1、1、3个箱子,里面分别装着5黄球、1白球4黄球、5白球。3个放球盆。
2、8个放球盆,里面放1白球2黄球。
3、每生2张表格。多媒体课件一套。
教学设计:
[ 片断一] 游戏激趣,导出课题
1、游戏激趣:教师提供三个箱子,里面分别放有5个黄球,1个白球4个黄球,5个白球,让学生分组进行摸球比赛,看哪个组摸到的白球最多为胜。
(请3个学生参加,每人代表一组。每次只摸出1个球,摸出后要先把球先放去才能再摸,每人摸6次)
2、引疑揭题:由不公平的比赛让学生产生疑问,再从摸出的结果中导出“不可能、可能、一定能”,并从“可能”中引出可能性有大有小,同时引导学生质疑,难道只能用以前学过的这些文字来表示可能性的大小吗?进而由此引出课题。(教师板书课题)
[设计意图:兴趣是最好的老师,课初以学生熟悉喜欢的游戏比赛引入,生动有趣,激起学生的学习欲望和疑问,并从学生的争辩意见中引出课题,起到较好的导入效果。]
[ 片断二] 动手操作,自主探究
1、引导学生独立思考,自主探究:要分别用什么数表示这三个箱子摸到白球的可能性的大小。让学生把数填在表格上,同时课件出示如下表格。
2、学生汇报,教师板书出学生的不同的表示法。 [ 设计意图:把课堂交给学生,要让学生尽可能地自己去发现,去创造,教师只是这个过程的引导者,这样培养出来的学生才有创新能力。本环节是在学生强烈的学习欲望被调动后,马上抓住最佳的思考契机,让学生探究“可以用什么样的数”分别表示三个箱子摸到白球的可能性大小,由此能产生较好的探究需要,也为下面的讨论研究提供了平台和素材。]
[ 片断三 ]质疑筛选,形成新知
1、先引导质疑:是不是几位同学所举的这些数可以用来分别表示上述三种摸球的结果呢?接着让学生先探究“不可能”和“一定能”的两种情况分别用什么数表示比较合适。
引导学生从“不可能发生的”的几种方法中,找出合适的表示方法(可能性是“0”——用“0”表示简单明了)。再用同样方法找出“一定能发生”的现象——用可能性是“1”来表示。
2、适时解释应用:让学生例举生活中上述两种现象的例子,并用语言进行相应的表达。
[ 设计意图:通过学生生成的资源,让他们在争辩中分析取舍,教师在关键处给予引导,在学生对“不可能”可用“0”表示、“一定能”可用“1”表示的意见认同后,及时联系生活实例,能使学生感悟到数学源于生活又高于生活;这样的设计不但体现学生的学和教师的导的和谐统一,而且针对性强,课堂效率高。]
3、再组织学生通过对2号箱摸到白球的可能性大小及同学所写的不同数的分析中,确定可以用分数“ 1/5”来表示比较恰当。
(1)启发引导:为什么可以用1/5来表示呢?
教师:(拿出2号箱的1个黄球)这个球有可能被摸到吗?这就是一种可能;(再拿出另1个黄球)这个球有可能被摸到吗?现在有几种可能?(指着箱中所有的球)这个箱子中的5个球都有可能被摸到吗?总共有几种可能?其中摸到白球的可能有几种?所以,摸到白球的可能性大小用数来表示应该是多少?从而让学生理解用分数表示可能性大小的意义。
(2)适时练习:教师通过往2号箱中先加入1个黄球,再加入1个白球,再加入1个白球,让学生分别说出能摸到白球、黄球的可能性的大小,来巩固新知。
[设计意图:本环节是本课的重点也是难点,学生只是初步知道可以用1/5来表示2个箱摸到白球的可能性的大小,但对到底为何能用且要用这个分数来表示并不完全理解。所以这里教师的启发引导显得特别重要。当学生初步了解用分数来表示可能性大小的意义后,及时进行练习,使学生学得扎实有效。]
(2)适时练习:教师通过往2号箱中先加入1个黄球,再加入1个白球,再加入1个白球,让学生分别说出能摸到白球、黄球的可能性的大小,来巩固新知。
[设计意图:本环节是本课的重点也是难点,学生只是初步知道可以用1/5来表示2个箱摸到白球的可能性的大小,但对到底为何能用且要用这个分数来表示并不完全理解。所以这里教师的启发引导显得特别重要。当学生初步了解用分数来表示可能性大小的意义后,及时进行练习,使学生学得扎实有效。]
[ 片断四 ] 归纳总结,提升认识,发展思维
1、归纳总结:
师:以前我们只会用文字来表示可能性的大小,通过今天的学习,我们又懂得了用数来表示可能性的大小,会更加准确明了。
2、 提升认识,发展思维:
借助线段图
让学生知道,可能性的大小还可以通过线段上的点来表示。在教学时,注意引导学生观察某一点从线段的左端到右端,从线段的右端到左端的位置移动引起可能性大小的变化情况,直观描述可能性的变化趋势。
[ 设计意图:在这个环节,教师引导学生进行归纳总结,让他们对知识有一个系统的认识是非常重要的。同时,教师在介绍用线段上的点来表示可能性的大小的同时,抓住有利时机,结合作线段图等动态的演示过程,自然而然地向学生渗透了“数形结合”和“极限”的数学思想。]
[ 片断五 ] 应用数学,活用数学
(一)基本性练习
1、填空:
(1)抛掷一个骰子,出现3点朝上的可能性是( ) 。
(2)某单位有73名员工举行抽奖活动,总共有73张奖票,每个员工都能中奖。设有一等奖3名,二等奖10名,三等奖60名,第一个抽奖者能抽中一等奖的可能性是()。
(3)如右图,转动转盘,指针指向阴影部分
的可能性是()。
2、判断:
(1)据推测,今天本地降雨的可能性是4/5,意思是今天本地一定有雨。( )
(2)抛掷一枚硬币,正面朝上的可能性是1/2,也就是说,抛20次就一定有10次正面朝上。( )
(二)拓展延伸:
*挑战自我:盒子中放着只是颜色不同的3个球,其中2个黄球1个白球,现在要求一次拿出两个球,你认为拿到2个都是黄球的可能性是多少?
师根据学生的回答板书出 1/3、1/2、2/3
合作,交流:学生先认真观察,然后再在小组内交流:用哪个数表示才对?教师巡视。
学生汇报,争辩。针对学生不同意见,教师作如下引导:
1、化抽象为形象。
请1男2女3个同学上台,分别代表1白球和2黄球。
问:把其中不同的两个球(同学)配成一对,总共有几种结果?(几种可能)?(生:3种)而拿到2个都是黄球的可能有几种?(1种)所以可能性是?(生:1/3)
2、化形象为抽象。
师:(课件)把这三个球排成一排,并分别标上字母a、b、c;
问:你能用以前学过的搭配中的学问来解释这个问题吗?(生:可能是ab也可能是ac,也可能是bc) [“课标”中强调,要让学生学有价值的、必需的数学,让不同的学生能有不同层次的发展。所以这部分的拓展练习,不仅使学生加深对用分数表示可能性的大小的意义的理解,而且还能让不同的学生能有不同层次的发展。在练习中,教师让学生先进行独立思考,观察、分析,在形成自己的认识后,再进行交流。这样留足了思维空间,使学生能有效地学习。同时教师的引导也十分讲究,为帮助学生理解,先通过模拟演示,化抽象为形象,再联系已有知识,进行,化形象为抽象,体现了数学化的建构过程。]
可能性教学设计【第二篇】
教学内容
苏教版《义务教育课程标准实验教科书数学》二年级(上册)第98~99页。
教学目标
1、使学生初步体验有些事件的发生是确定的,有些事件的发生是不确定的,初步学会用“一定”“可能”“不可能”等词语来描述生活中一些事情发生的可能性。
2、培养学生学习数学的兴趣以及良好的合作意识。
教学过程
一、谈话导入
小朋友喜欢玩游戏吗?今天老师和小朋友一起来玩游戏,高兴吗?老师希望小朋友在玩游戏的过程中注意与小组内的小朋友合作,能做到吗?
[说明:新课伊始,就抓住学生爱玩的心理,以游戏的方式把学生的注意力吸引过来。]
二、玩一玩
1、游戏一:抛硬币。
提问:这是什么?想知道用这枚硬币怎么玩游戏吗?
介绍抛硬币的方法:以小组为单位,组内一名小朋友向上抛硬币,其他小朋友猜正面朝上还是反面朝上。(教师在实物投影上说明硬币的正面和反面。)
学生在小组内进行游戏活动。
交流:刚才在抛硬币时,出现了哪些情况?
拿起一枚硬币,提问:如果老师把这枚硬币抛起,落下后结果会怎样?(学生猜结果)
追问:一定是正面朝上或一定是背面朝上吗?(不一定)应该怎样说?(引导学生用“可能”“也可能”说说游戏的结果)(板书:可能)
[说明:学生在玩游戏的过程中,初步感受到事件发生的不确定性,并尝试用“可能”等词汇进行表达,为后面的学习打好基础。]
2、游戏二:摸球。
出示3个红球3个黄球,谈话:(边说边演示)这里有3个红球和3个黄球,老师把它们放进袋子里,请小朋友想一想,如果从袋子中任意摸出一个球,结果会怎样?(可能是红球,也可能是黄球)结果是不是这样呢?我们可以摸一摸,看看是不是既有红球又有黄球。谁愿意和老师一起玩?
示范:老师摸,一学生记录摸出的球是什么颜色。(摸3次)
教师说明游戏规则,再让学生以小组为单位玩游戏。
提问:你们摸出的球是既有红球,又有黄球吗?为什么会出现这样的情况?(因为袋子里既有红球又有黄球,所以摸出的可能是红球,也可能是黄球。)
[说明:教师与学生之间以及小组内学生之间的摸球、猜球游戏,提高了学生参与学习的积极性。通过游戏,再次使学生感受到了事件发生的不确定性。]
设问:如果这个口袋里装3个黄球,3个绿球,任意摸一个球,摸出的可能是红球吗?(板书:不可能)
学生在小组里进行摸球,验证结论。
拿出装有6个红球的袋子,问:从这个袋子里任意摸一个球,结果会怎样?(一定是红球)可能是其他颜色的球吗?(不可能)(板书:一定)
谈话:请小朋友拿出这样的袋子,小组合作摸5次,看看结果怎样。
反馈:从这个袋子里摸出的一定是红球吗?
活动小结。(略)
[说明:以“提出猜想—摸球活动—解释说明”的方式,组织学生在具体的活动中,体会事件发生的可能性,感受“可能”“一定”“不可能”的含义,明确有些事件的发生是确定的,有些事件的发生是不确定的。在这一过程中,学生带着问题思考,伴着思考活动,探究意识得到了有效的培养,数学思考得到充分的发展。]
3、游戏三:转转盘。
出示转盘,谈话:这是一个转盘,分为红色、黄色、蓝色等三个区域,请小朋友想一想,转动指针,最后指针会停在哪里?
要求学生以小组为单位,轮流转动指针,看指针可能停在哪个区域。
学生交流后,小结:指针可能停在蓝色区域,也可能停在黄色区域或红色区域。
[说明:让每个学生动手试一试,并在小组合作的过程中切实感受到指针可能停留的区域,强化学生对“可能性”的感知,增强了合作意识。]
三、辨一辨
多媒体出示装有不同颜色球的三个口袋(①2个红球,3个黄球;②2个蓝球,3个红球;③5个黄球),以及蓝猫、淘气、菲菲判断从口袋里摸球情况的画面:
蓝猫:从口袋里任意摸一个球,一定是黄球。
淘气:从口袋里任意摸一个球,可能是黄球。
菲菲:从口袋里任意摸一个球,不可能是黄球。
(1)小组讨论:蓝猫、淘气、菲菲各摸的是哪个口袋?先在小组里说说你的想法。
(2)全班交流。(略)
[说明:以学生喜欢的卡通形象提出问题,增加了学习活动的情趣,有效地激发了学生的学习热情。通过说理,学生对事件发生的确定性和不确定性的感受得到了加深。]
四、放一放
谈话:老师这里有一些红球和绿球,你们能按要求把球放在袋子吗?
(1)往口袋里放一些球,从口袋里任意摸一个球,一定是绿球。
(2)往口袋里放一些球,从口袋里任意摸一个球,可能是绿球。
(3)往口袋里放一些球,从口袋里任意摸一个球,不可能是绿球。
学生分小组按要求完成操作,并说明理由。
[说明:让学生根据事件发生的结果推想条件,又一次加深了学生对可能性的感受,培养了学生的推理能力。]
五、说一说
提问:想一想,在生活中哪些事情一定会发生,哪些事情不可能发生,哪些事情可能会发生。能用“一定”“不可能”或“可能”说一句话吗?
小结:在我们生活中还有许多可能、不可能或一定发生的事情。只要我们平时多学、多问、多观察,就会有更多的发现。
六、课堂总结(略)
《可能性》教学设计【第三篇】
第一课时 摸球游戏
知识点:
1、通过“猜测—实践—验证”,让学生初步感受事情发生的确定性与不确定性,即一定发生或不可能发生的现象是确定的,而可能发生或可能不发生的现象是不确定的。
2、理解事件发生的可能性是有大有小的,可能性的大小与事件的基础条件及发展过程等许多因素有关。
3、在活动中培养学生的合作意识及合理推断的能力。
第二课时 生活中的推理
知识点:
让学生在以解决问题中经历对生活现象的推理、判断的过程,同时领悟出现逻辑推理问题的解决方法,如排除法、假设法、图解法等,并加以运用。在解决问题中培养学生的逻辑推理能力与语言表达能力,体验学习的乐趣。
《可能性》教学设计【第四篇】
教学内容:六年级数学上册第94-96页例1、例2及“试一试”、“练一练”和练习十八的第1、2、3题。
教学目标:
1、理解并掌握用分数表示可能性大小的基本思考方法,会用分数表示简单事件发生的可能性,进一步加深对可能性大小的认识。
2、能根据事件发生可能性大小的要求设计相应的活动方案,能联系实际对可能性大小的计算结果,判断相关游戏的规则是否公平。
3、在学习用分数表示可能性大小的过程中,进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。
4、进一步感受数学与生活的联系,明确生活中任何幸运和偶然的背后都有科学规律支配的。
教学重点:会用分数表示简单事件发生的可能性大小。
教学难点:理解并掌握用分数表示可能性大小的基本思考方法。
教学过程
一、创设情境,揭示课题
1、昆山商厦正在进行迎国庆购物中大奖活动,凡购物满100元,可以到转盘上转1次指针,猜猜中奖规则是怎样的?
(1)学生凭生活经验阐述(指明学生交流)。
(2)提问:虽然有些不同,为什么大家都认为指针停在红色区域是一等奖?(指针停在红色区域的可能性最小,有利于商家)你知道中一等奖、二等奖的可能性是多少吗?
2、小结:以前我们用“可能、一定、不可能”来描述可能性的大小,那可能性的大小能不能用更简单的数学语言来表示呢?这节课我们继续研究可能性。(板书课题:可能性的大小)
二、初步感知。
1、教学例1
(1)例1场景图 ,提出问题。
谈话:打乒乓是同学们喜爱的一项运动。你们打乒乓球时是怎么决定谁先发球的?(学生根据自己的生活经验介绍一般比赛中的方法。)
提问:用猜左右的方法决定由谁先发球公平吗?为什么?
(2)学生讨论后明确:一共有2种情况,乒乓球可能在左手,也可能在右手,对于运动员来说,无论猜左还是猜右,猜对的可能性是一半,猜错的可能性也是一半。
(3)问:可能性是一半用分数怎么表示?你怎么想到是1/2?
追问:2表示什么?1呢? (及时板书)
(4)小结:乒乓球可能在左手,也可能在右手,所以猜的结果只有“对”或“错”两种可能,猜对与猜错的可能性相等,都是1/2。用这种方法决定谁先发球是公平的。
(5)以前都是说一说谁的可能性大一些,谁的可能性小一些,现在我们也可以用分数来表示可能性的大小。(完成课题板书:用分数表示可能性的大小)
2、同步体验(第94页的“试一试”)。
课件呈现一个不透明的口袋。
(1)谈话:接着,我们来研究一下摸球活动中的可能性。这个袋子里原来有一些球,现在放入一个红球,从中任意摸出一个球,摸到红球的可能性是几分之几?(学生肯定有疑问)
(2)打开袋子(一红一黄)问:有答案了吗?你怎么想的?
(3)交流中明理:一共2个球,任意摸一个,有2种情况:摸到红球或摸到绿球,所以摸到红球的可能性是1/2。
(4)如果再往袋中放入一个绿球,现在任意摸一个球,摸到红球的可能性是几分之几?为什么?摸到绿球和黄球的可能性呢?
(5)讨论:为什么两次摸到红球的可能性会不同呢?这说明可能性的大小和什么有关?
(6)小结:虽然袋子里红球只有一个,但球的总数发生了变化,所以每次摸到红球的可能性也在变化,可能是1/2、可能是1/3等等。
(7)追问:如果要使摸到红球的可能性是1/6,口袋里至少要怎样放球?(答案不唯一,鼓励学生大胆交流,教师及时给予肯定。)
三、迁移提升。
1、教学例2
出示例2中的实物图:谁来介绍一下这六张牌?(或者让学生一起说说)
(1)问:把这些牌洗一下反扣在桌上,从中任意摸一张,摸到红桃a的可能性是几分之几?你是怎样想的?
(2)交流后明确:因为一共有6张牌,红桃a有1张,摸到红桃a的可能性是1/6。
(3)追问:摸到黑桃a的可能性是几分之几?摸到其他每张牌的可能性呢?
(4)小结:一共有6张牌,摸到每张牌的可能性都是1/6。
2、提问迁移。
(1)提问:从这6张牌,你还想到什么问题?(同桌交流后指名回答)
(2)指名口述问题,可能有:摸到红桃的可能性是几分之几?摸到a的可能性是几分之几?摸到2的可能性是几分之几?……
(3)逐题交流,重点交流第1个问题,明确各种思考方法。
方法可能有:
①摸到每张牌的可能性都是1/6,红桃有3张,摸到红桃的可能性是3个1/6,也就是1/2;
②一共6张牌,红桃有3张,摸到红桃的可能性是3/6,也就是1/2;
③6张牌平均分成2份,红桃是1份,摸到红桃的可能性是1/2。
3、教学“试一试”。
谈话:刚才我们研究的几个问题都是可能性相等的例子,实际生活中遇到的都是可能性相等的情况吗?我们继续研究摸球活动。
(1)课件出示第95页“试一试”题目及图片。
学生独立思考,然后交流各自的想法,多请几位学生来说说。
(2)比比两种球的可能性的大小,思考为什么。
4、谈话:下面请同学们打开课本第96页,独立完成第1题。
课件出示练习十八第1题,学生完成后进行交流,说说自己的想法。
追问:如果在每个口袋里任意摸一个球,摸到红球的可能性分别是多少?
学生在书上写出分数后进行交流,教师及时评价并关注全体学生练习情况。
四、全课总结。
提问:今天我们学习了什么?你有什么收获?你觉得这些知识有什么用?想想,实际生活中还有哪些情况也是可能性知识的运用。(学生举例说明)教师结合学生所举例子简单分析,如抛硬币时出现正面和反面的可能性相等,各是一半,可能性都是1/2;玩飞行棋扔色子时每个数朝上的可能性也是相等的,可能性都是1/6,等等。
五、实践与应用。
1、课件出示练习十八第2题。
(1)学生思考第1个问题,然后交流自己的想法,教师及时评价。
(2)出示第2个问题,学生独立思考并和同桌交流,再请几位学生交流,教师及时评价。
2、课件出示练习十八第3题。
提问:桌上有9张卡片,任意摸1张,小明和小红在玩游戏,出示规则:如果摸到奇数算小明赢,摸到偶数算小红赢,这个游戏公平吗?为什么?
追问:游戏规则怎么改就公平了?
3、课件出示问题:教材95页“练一练”
提问:我们用今天学到的知识再来研究一下商场里摸奖用的这个大转盘。指针转动后,停在红色区域的可能性是几分之几?停在黄色或蓝色区域呢?如果指针转80次,可能有多少次停在红色区域,可能有多少次停在黄色或蓝色区域?停在红色区域一定是10次吗?
小结:这只是根据可能性进行的预测,实际结果是不确定的,可能正好是10次,也可能大于10或小于10次。