首页 > 学习资料 > 教育其它 >

数学学习方法技巧精编3篇

网友发表时间 197141

【路引】由阿拉题库网美丽的网友为您整理分享的“数学学习方法技巧精编3篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

数学知识点1

第一章:空间几何。三视图和直观图的绘制不算难。但是从三视图复原出实物从而计算就需要比较强的空间感,要能从三张平面图中慢慢在脑海中画出实物。这就要求学生特别是空间感弱的学生多看书上的例图,把实物图和平面图结合起来看,先熟练地正推,再慢慢的逆推。有必要的还要在做题时结合草图,不能单凭想象。后面的锥体柱体台体的表面积和体积,把公式记牢问题就不大。做题表求表面积时注意好到底有几个面,到底有没有上下底这类问题就可以。

第二章:点、直线、平面之间的位置关系。这一章除了面与面的相交外,对空间概念的要求不强,大部分都可以直接画图,这就要求学生要多看图,自己画草图的时候要严格注意好实线虚线,这是个规范性问题。关于这一章的内容,牢记直线与直线、面与面、直线与面相交、垂直、平行的几大定理及几大性质,同时能用图形语言、文字语言、数学表达式表示出来。只要这些全部过关这一章就解决了一大半。这一章的难点在于二面角这个概念,难度在于对这个概念无法理解,即知道有这个概念,但就是无法在二面里面做出这个角。对这种情况只有从定义入手,先要把定义记牢,再多做多看,这个没有什么捷径可走。

第三章:直线与方程。这一章主要讲斜率与直线的位置关系。只要搞清楚直线平行、垂直的斜率表示问题就不大了。需要格外注意的是当直线垂直时斜率不存在的情况,这是常考点。另外直线方程的几种形式,记得一般公式会用就行,要求不高。点与点的距离、点与直线的距离、直线与直线的距离,记住公式,直接套用。

第四章:圆与方程。能熟练的把一般式方程转化为标准方程,通常的考试形式是等式的一遍含根号,另一边不含,这时就要注意开方后定义域或值域的限制;通过点到点的距离、点到直线的距离与圆半径的大小关系判断点与圆、直线与圆、圆与圆的位置关系。另外注意圆的对称性引起的相切、相交直线的多种情况,这也是常考点。

它山之石可以攻玉,以上就是差异网为大家整理的3篇《数学学习方法技巧》,希望可以启发您的一些写作思路,更多实用的范文样本、模板格式尽在差异网。

数学知识点2

一、角的定义

“静态”概念:有公共端点的两条射线组成的图形叫做角。

“动态”概念:角可以看作是一条射线绕其端点从一个位置旋转到另一个位置所形成的图形。

如果一个角的两边成一条直线,那么这个角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做钝角;大于0小于直角的角叫做锐角。

二、角的换算:1周角=2平角=4直角=360°;

1平角=2直角=180°;

1直角=90°;

1度=60分=3600秒(即:1°=60′=3600″);

1分=60秒(即:1′=60″)。

三、余角、补角的概念和性质:

概念:如果两个角的和是一个平角,那么这两个角叫做互为补角。

)差异网○(如果两个角的和是一个直角,那么这两个角叫做互为余角。

说明:互补、互余是指两个角的数量关系,没有位置关系。

性质:同角(或等角)的余角相等;

同角(或等角)的补角相等。

四、角的比较方法:

角的大小比较,有两种方法:

(1)度量法(利用量角器);

(2)叠合法(利用圆规和直尺)。

五、角平分线:从一个角的顶点引出的一条射线。把这个角分成相等的两部分,这条射线叫做这个角的平分线。

常见考法

(1)考查与时钟有关的问题;(2)角的计算与度量。

误区提醒

角的度、分、秒单位的换算是60进制,而不是10进制,换算时易受10进制影响而出错。

典型例题(20xx云南曲靖)从3时到6时,钟表的时针旋转角的度数是()

答案3时到6时,时针旋转的是一个周角的1/4,故是90度,本题选C.

关于数学的学习方法3

从初中升入高中,在数学学习上有一个飞跃,其表现在所学内容更多、难度更大、思维要求更高。因而学好高中数学,要求学生对数学问题的理解和处理要更具系统化、理性化和成熟化。

学好高中数学,在学习方法上要有所转变和改进。而做好数学笔记无疑是非常有效的环节,善于做数学笔记,是一个学生善于学习的反映。那么,数学笔记究竟该记些什么呢?

一 记内容提纲

老师讲课大多有提纲,并且讲课时老师会将一堂课的线索脉络、重点难点等,简明清晰地呈现在黑板上。同时,教师会使之富有条理性和直观性。记下这些内容提纲,便于课后复习回顾,整体把握知识框架,对所学知识做到胸有成竹、清晰完整。

二 记疑难问题

将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。教师在组织课堂教学时,受到时空的限制,不可能做到顾及每一位同学。相应的,一些问题对部分学生来说,是属于疑难问题,由于课堂上来不及思考成熟,记下疑难问题,可在课后继续加以思考和探究,加以理解和掌握,不致出现知识的断层、方法的缺陷。

三 记思路方法

对老师在课堂上介绍的解题方法和分析思路也应及时记下,课后加以消化,若有疑惑,先作独立分析,因为有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后及时与老师商榷和探讨。勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。在这基础上,若能主动钻研,另辟蹊径,则更难能可贵。

四 记归纳总结

注意记下老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找规律,融会贯通课堂内容都很有作用。同时,很多有经验的老师在课后小结时,一方面是承上归纳所学内容,另一方面又是启下布置预习任务或点明后面所要学的内容,做好笔记可以把握学习的主动权,提前作准备,做到目标任务明确。

五 记体会感受

数学学习是智、情、意、行的综合。数学学习过程伴随着积极的情感体验、意志体验过程,记下自己学习过程的感受,可以用来更好地调控自己的学习行为。譬如,一道运算很繁杂的习题,依靠坚强的意志获得解题成功后,可在旁边写上功夫不负有心人等自勉的语句,用来激励自己。

六 记错误反思

学习过程中不可避免地会犯这样或那样的错误,聪明人不犯或少犯相同的错误,记下自己所犯的错误,并用红笔醒目地加以标注,以警示自己,同时也应注明错误成因,正确思路及方法,在反思中成熟,在反思中提高。

俗话说:好记性不如烂笔头。坚持做好数学笔记,对于学好数学将会大有裨益。

总结:高一数学学习方法就为大家分享到这里了,同学们只要努力学习,积极动手,勤于动脑,多总结,善发现,一定会取得较好的成绩。

相关推荐

热门文档

23 197141