机械能守恒定律(4篇)
【路引】由阿拉题库网美丽的网友为您整理分享的“机械能守恒定律(4篇)”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
高中物理《机械能守恒定律》教案【第一篇】
一、教学目标
1.在已经学习有关机械能概念的基础上,学习机械能守恒定律,掌握机械能守恒的条件,掌握应用机械能守恒定律分析、解决问题的基本方法。
2.学习从功和能的角度分析、处理问题的方法,提高运用所学知识综合分析、解决问题的能力。
二、重点、难点分析
1.机械能守恒定律是本章教学的重点内容,本节教学的重点是使学生掌握物体系统机械能守恒的条件;能够正确分析物体系统所具有的机械能;能够应用机械能守恒定律解决有关问题。
2.分析物体系统所具有的机械能,尤其是分析、判断物体所具有的重力势能,是本节学习的难点之一。在教学中应让学生认识到,物体重力势能大小与所选取的参考平面(零势面)有关;而重力势能的变化量是与所选取的参考平面无关的。在讨论物体系统的机械能时,应先确定参考平面。
3.能否正确选用机械能守恒定律解决问题是本节学习的另一难点。通过本节学习应让学生认识到,从功和能的角度分析、解决问题是物理学的重要方法之一;同时进一步明确,在对问题作具体分析的条件下,要能够正确选用适当的物理规律分析、处理问题。
三、教具
演示物体在运动中动能与势能相互转化。
器材包括:麦克斯韦滚摆;单摆;弹簧振子。
四、主要教学过程
(一)引入新课
结合复习引入新课。
前面我们学习了动能、势能和机械能的知识。在初中学习时我们就了解到,在一定条件下,物体的动能与势能(包括重力势能和弹性势能)可以相互转化,下面我们观察演示实验中物体动能与势能转化的情况。
[演示实验] 依次演示麦克斯韦滚摆、单摆和弹簧振子,提醒学生注意观察物体运动中动能、势能的变化情况。
通过观察演示实验,学生回答物体运动中动能、势能变化情况,教师小结:
物体运动过程中,随动能增大,物体的势能减小;反之,随动能减小,物体的势能增大。
提出问题:上述运动过程中,物体的机械能是否变化呢?这是我们本节要学习的'主要内容。
(二)教学过程设计
在观察演示实验的基础上,我们从理论上分析物理动能与势能相互转化的情况。先考虑只有重力对物体做功的理想情况。
1.只有重力对物体做功时物体的机械能
问题:质量为m的物体自由下落过程中,经过高度h1处速度为v1,下落至高度h2处速度为v2,不计空气阻力,分析由h1下落到h2过程中机械能的变化(引导学生思考分析)。
分析:根据动能定理,有
下落过程中重力对物体做功,重力做功在数值上等于物体重力势能的变化量。取地面为参考平面,有
WG=mgh1-mgh2
由以上两式可以得到
引导学生分析上面式子所反映的物理意义,并小结:下落过程中,物体重力势能转化为动能,此过程中物体的机械能总量不变。
指出问题:上述结论是否具有普遍意义呢?作为课后作业,请同学们课后进一步分析物体做平抛和竖直上抛运动时的情况。
明确:可以证明,在只有重力做功的情况下,物体动能和势能可以相互转化,而机械能总量保持不变。
提出问题:在只有弹簧弹力做功时,物体的机械能是否变化呢?
2.弹簧和物体组成的系统的机械能
以弹簧振子为例(未讲振动,不必给出弹簧振子名称,只需讲清系统特点即可),简要分析系统势能与动能的转化。
明确:进一步定量研究可以证明,在只有弹簧弹力做功条件下,物体的动能与势能可以相互转化,物体的机械能总量不变。
综上所述,可以得到如下结论:
3.机械能守恒定律
在只有重力和弹簧弹力对物体做功的情况下,物体的动能和势能可以相互转化,物体机械能总量保持不变。这个结论叫做机械能守恒定律。
提出问题:学习机械能守恒定律,要能应用它分析、解决问题。下面我们通过具体问题的分析来学习机械能守恒定律的应用。在具体问题分析过程中,一方面要学习应用机械能守恒定律解决问题的方法,另一方面通过问题分析加深对机械能守恒定律的理解与认识。
4.机械能守恒定律的应用
例1.在距离地面20m高处以15m/s的初速度水平抛出一小球,不计空气阻力,取g=10m/s2,求小球落地速度大小。
引导学生思考分析,提出问题:
(1)前面学习过应用运动合成与分解的方法处理平抛运动,现在能否应用机械能守恒定律解决这类问题?
(2)小球抛出后至落地之前的运动过程中,是否满足机械能守恒的条件?如何应用机械能守恒定律解决问题?
归纳学生分析的结果,明确:
(1)小球下落过程中,只有重力对小球做功,满足机械能守恒条件,可以用机械能守恒定律求解;
(2)应用机械能守恒定律时,应明确所选取的运动过程,明确初、末状态小球所具有的机械能。
例题求解过程:
取地面为参考平面,抛出时小球具有的重力势能Ep1=mgh,动能
落地时小球的速度大小为
提出问题:请考虑用机械能守恒定律解决问题与用运动合成解决问题的差异是什么?
例2.小球沿光滑的斜轨道由静止开始滑下,并进入在竖直平面内的离心轨道运动,如图所示,为保持小球能够通过离心轨道最高点而不落下来,求小球至少应从多高处开始滑下?已知离心圆轨道半径为R,不计各处摩擦。
提出问题,引导学生思考分析:
(1)小球能够在离心轨道内完成完整的圆周运动,对小球通过圆轨道最高点的速度有何要求?
(2)从小球沿斜轨道滑下,到小球在离心轨道内运动的过程中,小球的机械能是否守恒?
(3)如何应用机械能守恒定律解决这一问题?如何选取物体运动的初、末状态?
归纳学生分析的结果,明确:
(1)小球能够通过圆轨道最高点,要求小球在最高点具有一定速度,即此时小球运动所需要的向心力,恰好等于小球所受重力;
(2)运动中小球的机械能守恒;
(3)选小球开始下滑为初状态,通过离心轨道最高点为末状态,研究小球这一运动过程。
例题求解过程:
取离心轨道最低点所在平面为参考平面,开始时小球具有的机械能E1=mgh。通过离心轨道最高点时,小球速度为v,此时小球的机械能
成完整的圆周运动。
进一步说明:在中学阶段,由于数学工具的限制,我们无法应用牛顿运动定律解决小球在离心圆轨道内的运动。但应用机械能守恒定律,可以很简单地解决这类问题。
例3.长l=80cm的细绳上端固定,下端系一个质量 m=100g的小球。将小球拉起至细绳与竖直方向成60°角的位置,然后无初速释放。不计各处阻力,求小球通过最低点时,细绳对小球拉力多大?取g=10m/s2。
提出问题,引导学生分析思考:
(1)释放后小球做何运动?通过最低点时,绳对小球的拉力是否等于小球的重力?
(2)能否应用机械能守恒定律求出小球通过最低点时的速度?
归纳学生分析结果,明确:
(1)小球做圆周运动,通过最低点时,绳的拉力大于小球的重力,此二力的合力等于小球在最低点时所需向心力;
(2)绳对小球的拉力不对小球做功,运动中只有重力对球做功,小球机械能守恒。
例题求解过程:
小球运动过程中,重力势能的变化量ΔEp=-mgh=-mgl(1-cos60°),
在最低点时绳对小球的拉力大小为
提出问题:通过以上各例题,总结应用机械能守恒定律解决问题的基本方法。
归纳学生的分析,作课堂小结。
五、小结
1.在只有重力做功的过程中,物体的机械能总量不变。通过例题分析要加深对机械能守恒定律的理解。
2.应用机械能守恒定律解决问题时,应首先分析物体运动过程中是否满足机械能守恒条件,其次要正确选择所研究的物理过程,正确写出初、末状态物体的机械能表达式。
3.从功和能的角度分析、解决问题,是物理学研究的重要方法和途径。通过本节内容的学习,逐步培养用功和能的观点分析解决物理问题的能力。
4.应用功和能的观点分析处理的问题往往具有一定的综合性,例如与圆周运动或动量知识相结合,要注意将所学知识融汇贯通,综合应用,提高综合运用知识解决问题的能力。
六、说明
势能是相互作用的物体系统所共有的,同样,机械能也应是物体系统所共有的。在中学物理教学中,不必过份强调这点,平时我们所说物体的机械能,可以理解为是对物体系统所具有的机械能的一种简便而通俗的说法。
机械能守恒定律【第二篇】
一、学情分析
学生已经在初中学习过有关机械能的基本概念,对“机械能”并不算陌生,接受起来相对轻松。通过前几节内容的学习,同学们对“机械能”这一概念较初中有了更深认识,在此基础上学习机械能守恒定律学生比较容易理解。
二、教材分析
(一)教材所处的地位和作用
本节课是本章的重点内容,要求学生能初步掌握机械能守恒定律的内容并能用来解决一些简单问题。机械能守恒条件的判定、机械能守恒定律的应用,是教学的重点。运用机械能守恒定律解答相关的问题,这一内容在整个高中力学中又起着承前启后的作用,在物理学理论和应用方面十分重要,不同运动形式的转化和守恒的思想能指引我们揭露自然规律、取得丰硕成果。但这种思想和有关的概念、规律,由于其抽象性强,学生不易理解、掌握。学生要真正的掌握和灵活运用还是很困难。机械能守恒定律的探究建立在前面所学知识的基础上,教材上通过多个具体实例,先猜测动能和势能的相互转化的关系,引出对机械能守恒定律及守恒条件的探究,联系重力势能和重力做功及弹性势能与弹力做功的关系的学习,由定性分析到定量计算,逐步深入,最后得出结论,并通过应用使学生领会定律在解决实际问题时的优越性。在教学设计时,力图通过生活实例和物理实验,展示相关情景,激发学生的求知欲,引出对机械能守恒定律的探究,体现从“生活走向物理”的理念,通过建立物理模型,由浅入深进行探究,让学生领会科学的研究方法,并通过规律应用巩固知识,体会物理规律对生活实践的作用。
(二)教学目标的确定依据
根据教材特点(注重思想性、探究性、逻辑性、方法性和哲理性)和学生的特点以及高中新课程的总目标(进一步提高科学素养,满足全体学生终身发展需求)和理念(探究性、主体性、发展性、和谐性)和三维教学目标(知识与技能、过程与方法、情感态度与价值观)的要求特制定教学目标。
(三)教学目标
1.知识与技能
(1)知道什么是机械能。
(2)知道物体的动能和势能可以相互转化。
(3)理解机械能守恒定律的内容。
(4)掌握机械能守恒的条件。
(5)学会在具体问题中,能判定机械能是否守恒,并能列出机械能守恒的方程式。
(6)初步学会从能量转化和守恒的观点来解释物理现象,分析问题的方法,提高运用所学知识综合分析、解决问题的能力。
2.过程与方法
(1)学会在具体的问题中判定物体的机械能是否守恒;
(2)初步学会从能量转化和守恒的观点来解释物理现象,分析问题。
3.情感、态度与价值观
(1)培养学生发现和提出问题,并利用已有知识探索学习新知识的能力。
(2)通过教学过程中各个教学环节的设计,如:观察、实验等,充分调动学生的积极性,激发学生的学习兴趣。
(3)通过能量守恒的教学,使学生树立科学观点,理解和运用自然规律,并用来解决实际问题。
机械能守恒定律【第三篇】
教师首先对动能、势能和机械能等概念进行简单的复习,承上启下,为本节课做了必要的知识准备。紧接着演示钟摆的摆动,一方面提供了动能、势能相互转化的情景(初中物理要强调情景,高中物理也不能轻视情景的作用),另一方面提出了机械能总和如何变化这个紧扣本课主题的问题。对这个问题的讨论,教师先是从直线运动出发,应用动能定理进行详细、深入的推导,接着扩展到曲线运动,从实验上进行了验证,从而较为严密又完整地得出了机械能守恒定律。对机械能守恒定律的条件的认识,则从物体只受1个重力到除了重力以外还受多个力的情况,展开一层又一层的分析,还从实验上作了反证。教学设计突破了教材原有的框架,思路清晰、自然,不显得突兀。(教材本来就只是给教师提供一种最基本也是最简洁的模板。具体的教学过程需要教师去填充、去创造)。实验的设计也有创意。如:为了说明有了空气阻力后机械能不再守恒,就用泡沫塑料球做成一个摆进行演示,效果明显,说服力很强。教学过程中“机械能守恒及其条件”这一重点显得十分突出。新授—应用—小结,程序完整。
在教学中教师对演示实验装置的说明、观察过程的提示也十分到位。反映出教师对实验的准备也十分细致、充分,而不马马虎虎、随便应付。
教师的讲解较为形象、生动,语言的表达准确、简洁。提问和随堂小实验较多,学生参与思考、参与观察的机会较多,学生学习的兴趣较浓,课堂气氛较活跃。科学探究的大多数要素在这节课中得到了较为自然的体现。板书尚可。
从后面让学生对几道判断机械能是否守恒的基本性题目中可以看出,这节课的教学效果是比较好的。
当然,毕竟是青年教师,不足之处也在所难免:写势能表达式时,未先提示零势能面在何处;“守恒”这一关键的名词作为高中物理中第一次出现,未作必要的解释;在一道例题的讲解中,对系统还是单个物体未作说明。这实际上也反映出,对一些很平常但又是很关键的问题学生经常要疏忽,而我们教师往往也不太在意。师生间在学习过程中存在着一些“通病”。这再一次提醒我们,教学要研究“教”,但也要研究“学”,甚至于应该更偏重于研究“学”。
附:教案
机械能守恒定律
一。 教学目的:
1 从机械能守恒的理论推导过程中理解机械能守恒的内容;
2 能在具体问题中判断机械能是否守恒;
二。 教学重点:
1. 在理论推导、分析、比较实际问题角度理解机械能守恒定律的内容;
2. 在分析比较中得到机械能守恒的条件;
三。 教学难点:
能正确判断研究对象在所经历的过程中机械能是否守恒;
四。 教学方法:
1. 关于机械能守恒定律的得出,采用师生共同演绎推导和实验的方法,明确该定律的数学表达式的来龙去脉及含义;
2. 通过实验与实际例子,学生在对比中总结机械能守恒的条件,并加以应用掌握。
五。 教学用具:
单摆小球两个(一个小刚球、一个泡沫球)、针、投影片若干。
六。 教学过程:
1 复习引入:
本章中我们学习了那些形式的能?
(学生)动能:物体由于运动而具有的能量,与M、V有关;
重力势能:物体由于被举高而具有的能量,与M、H有关;
弹性势能:物体由于形变而具有的能量,与形变程度有关;
总结:(1)将动能、重力势能、弹性势能统称为机械能。
动能的变化、重力势能的变化多少等于什么呢?
(学生)动能定理:W合=EK2—EK1;
重力势能的变化等于重力所做的功:WG=EP1—EP2;
过渡:在讨论了动能及变化和重力势能及变化后,那么有动能与重力势能间有无什么联系呢?
2 新课教学:
(1) 动能与重力势能间相互转化:
分析下列问题中的动能和重力势能;
举例:自由下落的粉笔
(学生):由于粉笔的高度越来越小,速度越来越大,高度减小说明重力势能在减小,速度增大说明动能在增加,下落过程中重力势能在向动能转化;
举例:向上抛出的物体在空中运动过程;
(学生):上升过程,动能转化为重力势能;下落过程,重力势能转化为动能。
请学生举一些物体动能与重力势能相互转化的运动过程;
(学生):平抛运动、摆钟的摆锤、大坝泄水发电等。学生分析这些过程中的能量转化。
过渡:通过上述的分析,动能和重力势能间可以相互转化,但对于动能和重力势能的总和即机械能有何变化呢?下面我们通过最简单的自由落体运动来进行研究。
(2) 机械能守恒的理论推导:
例:一个质量为M的物体自由下落,在下落过程中任意选取两个位置A、B。当物体经过任意位置A(距地面高为h1)时的速度为V1,经过任意位置B(距地面高为h2)时的速度为V2,试写出物体在A、B处的机械能。
(学生):定义地面为零势能参考平面
物体在A点的机械能:
(1/2)M V12+Mgh1
物体在B点的机械能:
(1/2)M V22+Mgh2
引导:下面我们一起来研究在下落过程中任意两个位置A、B的机械能的关系;
物体在A处的机械能包含了在A处的动能和重力势能,B处的机械能包含了在B处的动能和重力势能,从A到B动能发生了变化;重力势能发生了变化,所以A、B两点处的机械能就是两点的动能关系,重力势能关系。
(学生)关于动能变化:
W合=WG=(1/2)M V22—(1/2)M V12
关于重力势能的变化:
WG= Mgh1— Mgh2
上述两式相等,故:
(1/2)M V22—(1/2)M V12= Mgh1— Mgh2
A、B两点处的机械能的关系是什么?
(1/2)M V22 + Mgh2=(1/2)M V12+ Mgh1
即: EK2 + EP2 = EK1 + EP1
(在任选位置B处的动能)(任选B处的重力势能)(任选A处的动能)(任选A处的重力势能)
结论:在下落的任意两个位置处的机械能都是相等的,说明在下落过程中机械能守恒。
(3)、机械能守恒的条件:
是否只有在自由落体运动中才会机械能守恒?
实验:
现象1:刚性小球从A处无初速释放后,自由摆动到B点,B点与A点同高。若取摆动中的最低点为零势能参考平面,则A点处的机械能为EA=EKA+EPA=0+Mgh,B点的机械能为EB=EKB+EPB=0+Mgh,故摆到B点的机械能仍旧等于A处的机械能EA=EB,说明机械能在摆动的过程中没有发生变化,机械能守恒。
现象2:刚性小球在摆动中细线受到钉子的阻挡,小球虽不能摆到B点,但仍旧能摆到同样的高度,说明小球在摆动中机械能守恒。
结论:(1)在摆动过程中的任意两点机械能都守恒:0+EPA=0+EPB=Mghc+(1/2)mv2
(2)不仅是直线运动过程中机械能可以守恒,曲线运动机械能也可以守恒。
那么什么情况下机械能能守恒呢?
现在我们改用泡沫小球重复刚才的实验,请同学们注意观察实验现象;
(学生):小球从A处无初速释放后摆到最右端B点,很明显小球在B点处的机械能小于开始时的机械能,说明在摆动的过程中机械能不守恒。
能否通过比较此次实验与刚才的实验找出不守恒的原因?何时机械能能守恒?
(学生):由于此次实验中的空气阻力不可忽略。
(学生):以此提出一个机械能守恒的条件:当不受阻力时机械能会守恒。
进行比较三种运动中的受力情况,判断机械能守恒是否与受力有关。
(1) 自由落体,只受重力;
(2) 刚球摆动,受重力与拉力;
(3) 泡沫球摆动,受重力、拉力与不可忽略的阻力。
(学生):除重力以外受到拉力机械能可以守恒,若受到阻力就不守恒,说明机械能是否守恒与受力性质有关。
举例:用绳子将小球匀速往上拉升,小球动能未变,而重力势能在增加,即机械能发生变化。
反问:此时和刚球的摆动中受力一样,为何机械能却不守恒?两种情况有何不同?
(学生):刚球摆动中的拉力始终和速度垂直,故不做功,而绳子提升小球中的拉力作了功,故而不守恒。
(学生):不是看受哪些力,而是看除了重力以外的力是否做功,才是判断机械能是否守恒的唯一标准。
机械能守恒的条件:只有重力做功。
所谓只有重力做功是指物体只受重力,不受其他力;或者除了重力外还受其他力,但其他力不做功。
判断方法:(1)物体在运动中受哪些力;
(2)除重力外其他力是否做功
(4) 机械能守恒定律:在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。
它是力学中的一条重要定律,是更普遍的能量守恒定律的一种特殊情况。
(5) 课堂练习:(练习如何判断具体问题中机械能是否守恒)
I. 跳伞运动员带着张开的降落伞在空中匀速下落;
II. 抛出的手榴弹或标枪在空中运动;
III. 物体在光滑的斜面下滑;物体在粗糙的斜面下滑;
IV. 用细绳栓着一个小球,使小球在光滑的水平棉上做匀速圆周运动;
V. 用细线栓着一个小球,使小球在竖直面内做圆周运动;
VI. 在光滑水平面上运动的小球碰到一个弹簧,把弹簧压缩后,又被弹回来。
分析运动中的动能和弹性势能的相互转化,学生阅读书本130页最后一段归纳得出类似的结论:在弹性势能和动能的相互转化中,如果只有弹力做功,动能和弹性势能之和保持不变,即机械能守恒。
(6)小结:
当只有重力做功的情况下(说明两种情况),物体在运动的过程中机械能守恒,即运动中的任意位置的机械能都相等。
七。 教学后记:
1、在分析练习时要把相关的图象作出,再进行分析;
2、让学生更加主动的归纳知识和结论,可能出现错误结论,可以进行引导学生分析对比修正错误观点。
机械能守恒定律【第四篇】
§ 机械能守恒定律(1)
教学目标
知识与技能
1、知道什么是机械能,知道物体的动能和势能可以相互转化,知道能量的转换必须通过做功实现;
2、会正确推导物体在光滑曲面上运动过程中的机械能守恒,理解机械能守恒定律的内容、表达式、守恒的条件。
过程与方法
1、在具体的问题中会判定物体的机械能是否守恒;
2、初步学会从能量转化和守恒的观点来解释物理现象,分析问题。
情感、态度与价值观
通过能量转换与守恒的教学,培养学生学以致用的思想。
教学重点
理解机械能守恒定律的内容、表达式、守恒的条件。
教学难点
物体机械能是否守恒的判定
教具准备
单摆,弹簧振子,滚摆
教学过程
一、课前导学
演示单摆和弹簧振子,分析能量转化情况,引入新课。
二、质疑讨论
(一)动能和势能的相互转化
1、自由落体运动的物体运动过程中能量的转化情况是怎样的?
2、演示单摆和弹簧振子,分析能量转化情况。
小结: (1)动能和势能可以相互转化, 转化时必定有重力或弹簧的弹力做功;
(2)在忽略阻力只有重力或弹簧的弹力做功的物体系统内总的机械能保持不变。
(二)机械能守恒定律
1、内容:
2、表达式:
3、守恒的条件:
4、理解:
(1)“守恒”的含义:指一个过程中某个量一直保持不变,而并非只是初、末两状态相同。
(2)我们可以分三个层次来表述机械能守恒定律:
a、只有重力做功的情形。这时弹性势能不改变。可表示为:
b、只有弹力做功的情形。这时重力势能不改变。可表示为:
其中ek1和ek2表示守恒过程中任意两个状态时的动能,en1和en2表示守恒过程中任意两个状态时的弹性势能。
c、同时有重力和弹力做功、但其它力不做功的情形。可表示为:
重力、弹力以外的力做正功,机械能增加;重力、弹力以外的力做负功,机械能减少。
通常在不涉及时间和加速度的情况下,应用机械能守恒定律解题较为简便。
要注意:机械能守恒定律是针对系统而言的,即便我们平时说某个物体具有重力势能,实际上是指由该物体和地球组成的系统所具有的重力势能。
三、反馈矫正
例1:分析下列情况下机械能是否守恒?
a、跳伞运动员从空中匀速下落过程
b、物体以8m/s2在空中下落过程
c、物体作平抛运动过程
d、物体在细线拉力作用下沿光滑斜面上滑过程
例2:把一个小球用细绳悬挂起来,就成为一个摆(如图),摆长为l ,最大偏角为θ。小球运动到最低位置时的速度是多大?
讨论:1、最低点时绳的拉力;
2、利用机械能守恒定律解决问题的一般步骤。
(1)选取研究对象——系统或物体。
(2)根据研究对象所经历的物理过程。进行受力、做功分析,判断机械能是否守恒。
(3)恰当地选取参考平面,确定研究对象在过程的初末状态时的机械能。
(4)根据机械能守恒定律列方程,进行求解。
例3:如图所示,桌面高为a,质量为m的小球从离桌面高为h处自由落下,不计空气阻力,假设桌面处的重力势能为零,则小球落到地面前瞬间的机械能为 ( )
a、mgh b、mgh c、mg(h+h) d、mg(h—h)
四、巩固迁移
课课练108页1--6
§ 机械能守恒定律(2)
教学目标
知识与技能
1、进一步理解机械能守恒定律的内容,表达式和适用条件;
2、在具体问题中,能判定机械能是否守恒,并能列出机械能守恒的方程式。
过程与方法
进一步利用机械能守恒定律来解题
情感、态度与价值观
应用机械能守恒定律解决具体问题
教学重点
在具体的问题中能判定机械能是否守恒,并能列出定律的数学表达式。
教学难点
机械能是否守恒的判断,机械能守恒定律的应用
教学过程
一、课前导学
1、机械能守恒定律的内容
2、应用机械能守恒定律解题的步骤
二、质疑讨论
1、机械能守恒的条件: 只有重力或弹簧的弹力做功
理解:
(1) 系统只受重力,弹力
(2) 系统受重力,弹力外,还受其它力。但其它力都不做功
(3) 系统受重力,弹力外,还受其它力。但其它力做功代数和为零
2、机械能守恒定律的表达式:
三、反馈矫正
例1:长为l的均匀链条,放在光滑的水平桌面上,且使其长度的1/4垂在桌边,如图所示,松手后链条从静止开始沿桌边下滑,则链条滑至刚刚离开桌边时的速度大小为多大?
解析:链条下滑时,因桌面光滑,没有摩擦力做功。整根链条总的机械能守恒,可用机械能守恒定律求解。设整根链条质量为m,则单位长度质量(质量线密度)为:m/l
设桌面重力势能为零,由机械能守恒定律得
点拨:求解这类题目时,一是注意零势点的选取,应尽可能使表达式简化,该题如选链条全部滑下时的最低点为零势能点,则初始势能就比较麻烦。二是灵活选取各部分的重心,该题最开始时的势能应取两部分(桌面上和桌面下)势能总和,整根链条的总重心便不好确定,最后刚好滑出桌面时的势能就没有必要再分,可对整根链条求出重力势能。
例2:课课练113页11题
例3:课课练114页17题
四、巩固迁移
1、课课练114页15题16题
2、课课练111页1--4题
§ 《机械能守恒定律》习题
主备人:黄步海
教学目标
知识与技能
进一步理解机械能守恒定律的内容、表达式、守恒的条件。
过程与方法
应用机械能守恒定律解题
情感、态度与价值观
通过能量转换与守恒的教学,培养学生学以致用的思想。
教学重点
理解机械能守恒定律的内容,表达式。 守恒的条件。
教学难点
物体机械能定律的应用
教学过程
一、课前导学
复习机械能守恒定律及其条件
二、质疑讨论
1、在只有重力和弹簧的弹力做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变。
2、 对机械能守恒定律的理解:
(1)系统在初状态的总机械能等于末状态的总机械能。
即 e1 = e2 或 1/2mv12 + mgh1= 1/2mv22 + mgh2
(2)物体(或系统)减少的势能等于物体(或系统)增加的动能,反之亦然。
即 -δep = δek
(3)若系统内只有a、b两个物体,则a减少的机械能ea等于b增加的机械能δe b 即 -δea = δeb
3、机械能守恒定律解题步骤
三、反馈矫正
例1质量为m的小球从离心轨道上由静止开始无摩擦滑下后进入竖直面内的圆形轨道,圆形轨道的半径为r,求:(1)要使小球能达到圆形轨道的最高点,h至少应为多大?(2)当h=4r时,小球运动到圆环的最高点速度是多大?此时圆环对小球的压力为多少?
例2一根内壁光滑的细圆管,形状如下图所示,放在竖直平面内一个小球自a口的正上方高h处自由落下,第一次小球恰能
抵达b点;第二次落入a口后,自b口射出,恰能再进入
a口,则两次小球下落的高度之比h1:h2= ______
例3:如图示,长为l 的轻质硬棒的底端和中点各固定一个质量为m的小球,为使轻质硬棒能绕转轴o转到最高点,则底端小球在如图示位置应具有的最小速度v= 。
例4:如图所示,一固定的楔形木块,其斜面的倾角θ=30°,另一边与地面垂直,顶上有一定滑轮。一柔软的细线跨过定滑轮,两端分别与物块a和b连结,a的质量为4m,b的质量为m,开始时将b按在地面上不动,然后放开手,让a沿斜面下滑而b上升。物块a与斜面间无摩擦。设当a沿斜面下滑s 距离后,细线突然断了。求物块b上升离地的最大高度h.
四、巩固迁移
1、一个人站在阳台上,以相同的速率v分别把三个球竖直向上抛出、竖直向下抛出、水平抛出,不计空气阻力,则三球落地时的速率( )
a、上抛球最大 b、下抛球最大 c、平抛球最大 d、三球一样大
2、如图-1,小球自a点由静止自由下落,到b点时与弹簧接触,到c点时弹簧被压缩到最短,若不计弹簧质量和空气阻力,在小球由a→b→c的运动过程中( )
a、物体从a下降到b的过程中,动能不断变小
b、物体从b上升到a的过程中,动能先增大后减小
c、物体由a下降到b的过程中,弹簧的弹性势能不断增大
d、物体由b上升到a的过程中,弹簧所减少的弹性势能等于物体所增加的动能与增加的重力势能之和
3、长为l质量分布均匀的绳子,对称地悬挂在轻小的定滑轮上,如图所示。轻轻地推动一下,让绳子滑下,那么当绳子离开滑轮的瞬间,绳子的速度为 .
4、将质量为m和3m的两小球a和b分别拴在一根细绳的两端,绳长为l,开始时b球静置于光滑的水平桌面上,a球刚好跨过桌边且线已张紧,如图所示。当a球下落时拉着b球沿桌面滑动,桌面的高为h,且h<l.若a球着地后停止不动,求:(1)b球刚滑出桌面时的速度大小。(2)b球和a球着地点之间的距离。
实验:验证机械能守恒定律
教学目标
知识与技能
1、会用打点计时器打下的纸带计算物体运动的速度;
2、掌握验证机械能守恒定律的实验原理。
过程与方法
通过用纸带与打点计时器来验证机械能守恒定律,体验验证过程和物理学的研究方法。
情感、态度与价值观
通过实验验证,体会学习的快乐,激发学习的兴趣;通过亲身实践,树立“实践是检验真理的唯一标准”的科学观。培养学生的观察和实践能力,培养学生实事求是的科学态度。
教学重点
掌握验证机械能守恒定律的实验原理。
教学难点
验证机械能守恒定律的误差分析及如何减小实验误差的方法。
教学过程
一、课前导学
⒈为进行验证机械能守恒定律的实验,有下列器材可供选用:铁架台,打点计时器,复写纸,纸带,秒表,低压直流电源,导线,电键,天平。其中不必要的器材有: ;缺少的器材是 。
⒉物体做自由落体运动时,只受 力作用,其机械能守恒,若物体自由下落h高度时速度为v,应有mgh= ,故只要gh=1/2v2成立,即可验证自由落体运动中物体的机械能守恒。
⒊在打出的各纸带中挑选出一条点迹 ,且第1、2两打点间距离接近
的纸带。
⒋测定第n个点的瞬时速度的方法是:测出与n点相邻的前、后两段相等时间t内下落的距离sn和sn+1,,有公式vn= 算出。
⒌在验证机械能守恒定律时,如果以v2/2为纵轴,以h为横轴,根据实验数据绘出的图线应是 ,才能验证机械能守恒定律,其斜率等于 的数值。
二、质疑讨论
1、推导出机械能守恒定律在本实验中的具体表达式。
在图1中,质量为m的物体从o点自由下落,以地作零重力势能面,下落过程中任意两点a和b的机械能分别为:
ea= , eb=
如果忽略空气阻力,物体下落过程中的机械能守恒,于是有
ea=eb,即 =
上式亦可写成
该式左边表示物体由a到b过程中动能的增加,右边表示物体由a到b过程中重力势能的减少。等式说明,物体重力势能的减少等于动能的增加。为了方便,可以直接从开始下落的o点至任意一点(如图1中a点)来进行研究,这时应有: ----本实验要验证的表达式,式中h是物体从o点下落至a点的高度,va是物体在a点的瞬时速度。
2、如何求出a点的瞬时速度va?
根据做匀加速运动的物体在某一段时间t内的平均速度等于该时间中间时刻的瞬时速度可求出a点的瞬时速度va。图2是竖直纸带由下而上实际打点后的情况。从o点开始依次取点1,2,3,……图中s1,s2,s3,……分别为0~2点,1~3点,2~4点…… 各段间的距离。
根据公式 ,t=2× s(纸带上任意两个相邻的点间所表示的时间都是),可求出各段的平均速度。这些平均速度就等于是1,2,3,……各点相对应的瞬时速度v1,v2,v3,…….例如:量出0~2点间距离s1,则在这段时间里的平均速度 ,这就是点1处的瞬时速度v1。依次类推可求出点2,3,……处的瞬时速度v2,v3,……。
3、如何确定重物下落的高度?图2中h1,h2,h3,……分别为纸带从o点下落的高度。根据以上数值可以计算出任意点的重力势能和动能,从而验证机械能守恒定律。
学生活动:学生看书明确实验的各项任务及实验仪器。复习《用打点计时器测速度》的实验,掌握用打点计时器测量匀变速直线运动速度的方法。
三、反馈矫正
1、在学生开始做实验之前,应强调如下几个问题:
(1)该实验中选取被打点纸带应注意两点:一是第一点o为计时起点,o点的速度应为零。怎样判别呢?
(2)是否需要测量重物的质量?
(3)在架设打点计时器时应注意什么?为什么?
(4)实验时,接通电源和释放纸带的顺序怎样?为什么?
(5)测量下落高度时,某同学认为都必须从起始点算起,不能弄错。他的看法正确吗?为了减小测量 h值的相对误差,选取的各个计数点要离起始点适当远些好,还是近些好?
参考:
(1)因为打点计时器每隔 s打点一次,在最初的 s内物体下落距离应为 m,所以应从几条纸带中选择第一、二两点间距离接近两年2 mm 的纸带进行测量;二是在纸带上所选的点就是连续相邻的点,每相邻两点时间间隔 t = s.
(2)因为不需要知道物体在某点动能和势能的具体数值,所以不必测量物体的质量 m,而只需验证 就行了。
(3)打点计时器要竖直架稳,使其两限位孔在同一竖直平面内,以尽量减少重物带着纸带下落时所受到的阻力作用。
(4)必须先接通电源,让打点计时器正常工作后才能松开纸带让重物下落。
(5)这个同学的看法是正确的。为了减小测量 h值的相对误差,选取的各个计数点要离起始点适当远些好。
2、学生进行分组实验。
四、巩固迁移
(1)为进行“验证机械能守恒定律”的实验,有下列器材可供选用:铁架台,打点计时器,复写纸,纸带,秒表,低压直流电源,导线,电键,天平。其中不必要的器材有: ;缺少的器材是 。
(2)在验证机械能守恒定律时,如果以v2/2为纵轴,以h为横轴,根据实验数据绘出的图线应是 ,才能验证机械能守恒定律,其斜率等于 的数值。
(3)在做“验证机械能守恒定律”的实验时,用打点计时器打出纸带如图3所示,其中a点为打下的第一个点,0、1、2……为连续的计数点。现测得两相邻计数点之间的距离分别为s1、s2、s3、s4、s5、s6,已知相邻计数点间的打点时间间隔均为t。根据纸带测量出的距离及打点的时间间隔,可以求出此实验过程中重锤下落运动的加速度大小表达式为____ _____。在打第5号计数点时,纸带运动的瞬时速度大小的表达式为___ _____。要验证机械能守恒定律,为减小实验误差,应选择打下第_________号和第__________号计数点之间的过程为研究对象。
(4)某次“验证机械能守恒定律”的实验中,用6v、50hz的打点计时器打出的一条无漏点的纸带,如图4所示,o点为重锤下落的起点,选取的计数点为a、b、c、d,各计数点到o点的长度已在图上标出,单位为毫米,重力加速度取/s2,若重锤质量为1kg。
①打点计时器打出b点时,重锤下落的速度vb= m/s,重锤的动能ekb= j。
②从开始下落算起,打点计时器打b点时,重锤的重力势能减小量为 j。
③根据纸带提供的数据,在误差允许的范围内,重锤从静止开始到打出b点的过程中,得到的结论是 。
参考答案:(1)不必要的器材有:秒表、低压直流电源、天平。缺少的器材是低压交流电源、重锤、刻度尺。(2)通过原点的直线、g. (3)(s6+ s5+ s4- s3- s2 –s1)/9t 2,(s5+ s6)/2t,1、5. (4)①,, ②, ③机械能守恒。