首页 > 学习资料 > 教案大全 >

五年级下册数学教案优质4篇

网友发表时间 1815645

【导言】此例“五年级下册数学教案优质4篇”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

五年级下册人教版数学教案【第一篇】

教学目标:

1、认识常用的体积单位:立方厘米、立方分米、立方米,在数学活动中建立体积是1立方厘米、1立方分米、1立方米的空间观念。

2、自主探索得出相邻体积单位之间的进率,发展学生的空间观念,培养学生的推理能力。

3、培养学习类比能力,从已有知识——面积单位引发思考,初步了解体积单位和面积单位之间的联系与区别。

4、在动手操作、观察比较、质疑反思等活动中,培养团队意识,提升合作精神与质疑能力。

教学重点:

初步建立体积是1立方厘米、1立方分米、1立方米的空间观念,能正确应用体积单位估算常见物体的体积。

教学难点:

通过探索,自主推算出相邻体积单位间的进率。

教学准备:

多媒体课件、体积单位模型、彩泥、魔方等。

教学过程:

一、创设情境,引发思考

师:上一节课,我们认识了体积,什么是物体的体积?

问:体积有大有小,小胖和小巧运用所学知识搭积木、比体积。哪个体积比较大?(生生交流)

师:今天这节课就让我们一起来探究体积单位(揭示课题:体积单位)。

二、合作学习,探究新知

(一)探寻学生已有知识:

问:关于体积单位你已经了解了些什么?让我们先相互交流一下!(生生交流)

(预设:知道常用体积单位有立方厘米、立方分米、立方米,并会用字母表示)

设计意图:教学是从学生原有的基础和经验出发的,了解学生已知的,分析他们未知的,有针对性地设计教学,才能构建高效课堂

(二)建立1cm3、1dm3、1m3的空间观念

1、建立1立方厘米的空间观念:

(1)初步感知1cm3有多大:

问:让我们先畅所欲言,你认为1cm3有多大?哪些物体接近1 cm3?(课件展示)

设计意图:“你认为1cm3有多大?”引导学生用自己的方式表达自己心中1立方厘米的大小,或用身边的物体参照、或用手势比划,或对或错,形式不一的表达方式,更激发了学生探究的热情——究竟1立方厘米有多大。

(2)触类旁通,定义1 cm3的大小:

师:我们已经知道边长为1cm的正方形,面积是1cm2,你能触类旁通定义1 cm3的大小吗?(同桌讨论)

设计意图:在教学中,我们应当注意对学生迁移意识的培养,也就是说要注重运用类比的思想。

(3)进一步感知1cm3的大小:

做一做:请大家四人为一小组,用彩泥捏出一些体积是1立方厘米的正方体。拼一拼,2立方厘米、5立方厘米、10立方厘米分别有多大。

(4)想一想,填一填:

师:我们知道计量一个物体的体积,就是看它含有多少个体积单位。下列长方体或正方体是用几个1立方厘米的正方体积木搭出的?体积是多少?(课件展示)

2、建立1立方分米、1立方米的空间观念:

(1)举一反三:从1 cm3定义1 dm3、1 m3的大小。(生生交流)

设计意图:在类比的基础上尝试举一反三,不仅使数学知识容易理解,而且对概念的记忆有水到渠成之感,自然、简洁,从而激发起学生的创造力。

(2)想象一下:1 dm3、1 m3有多大?哪些物体接近1 dm3、1 m3?(学生举例,课件、教具辅助)

设计意图:学会定义1dm3和1m3,不等同于就能正确感悟它们实际的空间大小,教师事先准备了3阶魔方、4阶魔方和1个标准1dm3的模型,让学生选择哪一个立方体更接近1dm3,学生通过观察、猜测、验证,从而获得对知识的真正意义。

(3)学生活动:4个同学为一组,手拉手,围出一个大约1m3的空间。

设计意图:用3根1m长的木条做成一个互成直角的架子,放在墙角,想象一下1m3的空间有多大。这样的想象也能提升学生对1立方米的空间观念,但是如果能创造一个有趣的学生活动,让学生们在实践活动中体验1立方米的大小,不仅提升了团队协作能力,而且在做中学,更能有效帮助学生建立体积是1立方米的空间大小。

3、练习(用合适的体积单位表示下面物体):

一块橡皮的体积约是( )。

一台录音机的体积约是( )。

运货集装箱的体积约是( )。

一本新华字典的体积约是( )。

一个西瓜的体积约是( )。

一间教室的体积约是( )。

(三)继续类比,探究相邻体积单位间的进率:

1、师:学好知识要能触类旁通,今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,同时我们也要关注它们的区别,它们有哪些区别呢?(同桌交换意见)

2、追问:cm2、dm2、m2每相邻两个面积单位间的进率是100,猜想一下cm3、dm3、m3相邻体积单位间的进率又是多少呢?(学生猜想)

设计意图:安排“猜想”有两层含义,一是进一步引导学生关注到面积单位与体积单位间的区别,更重要的是为了让学生掌握知识、提升能力,我们必须带领学生“再创造”,虽然知识是前人证明和研究出来的,但我们更应该让学生也像数学家们一样学会自己发现,“没有大胆的猜想就做不出伟大的发现”(牛顿)。

3、验证:你们有什么好方法证明1cm3和1dm3间的关系呢?(课件辅助演示1个——10个——100个——1000个的过程)

设计意图:在小学数学教学中,我们应当重视“猜想—验证”这一重要思想方法的渗透与培养,使学生在猜想验证中获得探究的乐趣。

4、运用:同桌合作,请说一说1dm3和1m3间的关系。(课件演示)

5、拓展:通过探究,我们知道每相邻两个体积单位之间的进率是1000,你们还有什么疑问吗?(预设:你能试着说一说1cm3和1m3之间的关系吗?)

设计意图:学生自己提出探索1cm3和1m3之间的关系,进一步激发学生探究的热情。同时也继续渗透类比的思想方法,或用100×100×100,或用1000×1000,鼓励学生能多角度思考与验证,收获成功的喜悦。

三、动手操作,质疑反思:(机动,也可作为课后拓展)

学生活动:用一些棱长为1厘米的小正方体,做下面的活动。

1、用4个小正方体可以摆成一个大正方体吗?

2、最少要用多少个小正方体才可以摆成一个大正方体?

3、你能再摆一个大一些的正方体吗?用了多少个小正方体?

设计意图:以“猜想—验证”为核心,引导学生多角度探索问题,发现规律,并打通与体积单位进率之间的关系。

四、总结全课,感悟学习方法:

师:通过今天的学习,你有哪些新的收获?(生生互动)

小结:今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,学习就要学会触类旁通、举一反三。

人教版五年级下册数学教案【第二篇】

长方体和正方体的认识

教学目标:

1.掌握长方体和正方体的特征,认识它们之间的关系。

2.培养学生动手操作、观察、抽象概括的能力和初步的空间观念。

3.渗透事物是相互联系,发展变化的辩证唯物主义观点。

教学重、难点:

1.长方体和正方体的特征。

2.立体图形的识图。

教学设计:

一、出示课题,学习目标

掌握长方体和正方体的特征,认识它们之间的关系

二、出示自学指导

认真看课本认识长方体的特征和正方体的特征

三、学生看书,自学

四、效果检测

(一)长方体的特征。

①长方体有几个面?面的位置和大小有什么关系?

②长方体有多少条棱?棱的位置、长短有什么关系?

③长方体有多少个顶点?

小组讨论,然后完成p28的表格。

请完整地说一说长方体的特征。

明确:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

(二)正方体特征。

对照长方体的特征学生自己研究正方体的特征。

学生讨论、归纳后,教师板书:正方体

面:6个完全相同的正方形。

棱:12条棱长度都相等。

顶:8个。

讨论比较长方体和正方体的特征。

相同点:面、棱、顶点的数量上都相同;

不同点:在面的形状、面积、棱的长度方面不相同。

教师提问:看一看长方体的特征正方体是否都有?试说一说长方体和正方体的关系。

(正方体是特殊的长方体)

五、巩固反馈:

1、量一量自己手中的长方体的长、宽、高,说出每个面的长和宽是多少?

2、判断。正确的在括号里画√,错误的画×。

(1)长方体的六个面一定是长方形。 ( )

(2)正方体的六个面面积一定相等。 ( )

(3)一个长方体(非正方体)最多有四个面面积相等。( )

(4)相交于一个顶点的三条棱相等的长方体一定是正方体。( )

五、课堂总结:

谁来说一说长方体和正方体的特征和它们之间的关系?

六、课后作业:

1、拿一个火柴盒,量一量它的长、宽、高各是多少?然后说一说每个面的长和宽各是多少?

2、完成p29的“做一做”。

板书设计:

长方体和正方体的认识

比较长方体和正方体的特征。

相同点:面、棱、顶点的数量上都相同;

不同点:在面的形状、面积、棱的长度方面不相同。

第二课时:

教学内容:求长方体正方体棱长和及相应练习

教学目标:复习长方体和正方体的特征研究棱长和的计算。

教学重点:

1、长正方体的特征。

2、棱长和计算方法。

一、出示课题,学习目标

复习长方体和正方体的特征研究棱长和的计算

二、计算:

1、小卖部要做一个长米,宽40厘米,高80厘米的玻璃柜台,先要在柜台各边都安上角铁,这个柜台需要多少米角铁?

独立思考,列式计算,小组交流方法。

汇报:你是怎样想的?

长方体12条棱,分成3组,4个长、4个宽、4条高。

40厘米=米 80厘米=米

×4+×4+×4还可以(++)×4

问:根据是什么?

2、为迎接五一国际劳动节,工人叔叔要在工人俱乐部的四周装上彩灯(地面的四边不装)。已知工人俱乐部的长90厘米,宽55厘米,高20厘米,工人叔叔至少需要多长的彩灯线?

问:地面的四边不装,是指哪四条边不装?计算至少需要多长的彩灯线,是求几条边的长度和?

三、巩固练习:

1一个长方体的所有棱长和72厘米,已知长是8厘米,宽是6厘米。高是多少厘米?

2学雷锋小组为班里做一个节约箱,箱长5分米,宽长4分米,高长3分米。想一想应该怎样做?至少需要多大的纸板?

小学五年级数学下册教案【第三篇】

备课时间:

20xx年9月25日。

教学内容:

练习八7-10题。

教学目标:

1、使学生在练习的过程中进一步理解和掌握小数加减法的计算方法以及和整数加减法的关系,能熟练地进行计算。

2、进一步提高自己的计算能力。

3、在解决问题的活动中,培养学生与他人合作的。意识和能力。

教学重点:

进一步理解和掌握小数加、减法的计算方法。

教学进程:

一、复习。

1、口算。

2、计算并验算。

3、找出错误的地方。

学生解决,教师针对学生存在的错误予以纠正。

二、练习深化。

1、练习八第7题。

学生地理思考解决问题。

指名回答。

针对存在的错误予以纠正。

2、练习八第8题。

学生独立计算。

指名板演,教师讲解,纠正错误,予以改正。

3、练习八的第九题。

解决前三个问题后,还可以结合统计图的特点,

引导学生进一步提出:“这一天中哪段时间病人体温上升最快,上升了多少度”,“哪段时间病人体温下降得最快,下降了多少度”等问题,以激发学生解决问题的兴趣。

4、练习八的第十题:

可以让学生独立解答前两个问题,并要求说说每题的思考过程,再让学生提出一些不同的问题进行解答。

三、课后延伸。

练习八的思考题。

可以先根据“减去一个两位小数得”,算出作为减数的两个小数应是。再用加上,然后可得到正确的结果。

四、课堂小结。

你认为你学的怎么样?能给自己一个评价吗?

布置作业:补充习题练习。

小学五年级数学下册教案【第四篇】

教学目标:

1.知识与技能

理解并掌握小数化分数和分数化小数的方法;

2.过程与方法

能熟练的将分数和小数互化;

3.情感态度价值观

通过教学,沟通分数与小数的联系,渗透事物是相互联系,可以相互转化的辩证唯物主义观点;

教学重、难点:

分数与小数互化的方法;

教具准备:

课件、投影仪。

教学过程:

教学环节

设计意图

教学预设

一、复习准备

通过两个题的复习,为这节课的学习做铺垫,这节课会用到这些解题的方法。

1.读出下面各小数,并说出它们的'意义。

,,,,,,,。

2.求下面各题的商。(小数、分数。)

3÷4 15÷45 1÷8

5÷10 9÷10 6÷15

[过渡]:你们见过羚羊和鸵鸟吗?这两种动物跑的都很快,羚羊每分钟跑千米,鸵鸟每分钟跑千米,你知道羚羊和鸵鸟赛跑谁能赢吗?

在我们的日常生活和进一步的学习中,常会遇到一些比较分数和小数大小的实际问题,今天我们就来学习怎么比较分数和小数的大小。(板书课题)

二、探索发现

通过两种动物的赛跑比赛,沟通分数与小数的联系,让学生在自主的学习中发现小数与分数互化的方法。

师:想一想,我们该怎么解决上面提到的问题呢?你有什么方法呢?动手做一做看你能算出来吗?

先让学生自己来做,教师巡视,看学生的计算情况,同桌之间可以互相交流,然后找学生回答自己的作法。

生1:根据小数的意义,把写成分数,=,这时只要比较和这两个分数的大小即可。

师:对,这位同学很聪明,他依据小数的意义把小数化成分数,然后比较两个分数的大小。那怎样比较它们的大小呢?

生:在比较和的大小时,需要先把这两个数通分,它们的公分母是10,所以,>,由此可得>,所以羚羊比鸵鸟跑的快。

师:这种方法很好,是先把小数化成了分数,然后再比较分数的大小。谁还有不同的方法?

生:也可以把分数化成小数,然后比较两个小数的大小。

师:对,谁是用这种方法做的,来说一说。

生:把化成小数是:=4÷5=,

师:通过上面的分析过程,我们可以看出,在比较分数和小数的大小时,既可以把分数化成小数,也可以把小数化成分数。

[议一议]:怎样把分数化成小数?怎么把小数化成分数?

我们再来看下面的几个例题,通过例题我们来总结规律。(教师演示课件“分数与小数的互化。swf”)

三、课堂练习

通过练习熟练这节课所学知识。

课本P86“试一试”:

1.把下面的分数化成小数。(除不尽的保留两位小数)

2.把下面的小数化成分数。(能约分的要约分)

四、课堂小结

这节课你有哪些收获,同桌之间相互交流一下。

五、课后作业

课本P86“练一练”1、2、3题。

板书设计:

课题:分数、小数互化

1.复习

分钟赛跑

3.例题

4.课堂练习

相关推荐

热门文档

20 1815645