首页 > 学习资料 > 教案大全 >

数学初二教案【推荐4篇】

网友发表时间 361493

【路引】由阿拉题库网美丽的网友为您整理分享的“数学初二教案【推荐4篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

初二数学教案【第一篇】

一、教材分析:

勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。

教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。

据此,制定教学目标如下:

1、理解并掌握勾股定理及其证明。

2、能够灵活地运用勾股定理及其计算。

3、培养学生观察、比较、分析、推理的能力。

4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。

二、教学重点:

勾股定理的证明和应用。

三、教学难点:

勾股定理的证明。

四、教法和学法:

教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。

切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。

五、教学程序:

本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:

(一)创设情境以古引新

1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。

2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。

3、板书课题,出示学习目标。(二)初步感知理解教材

教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。

(三)质疑解难讨论归纳:1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。2、教师引导学生按照要求进行拼图,观察并分析;(1)这两个图形有什么特点?(2)你能写出这两个图形的面积吗?

(3)如何运用勾股定理?是否还有其他形式?

这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。

(四)巩固练习强化提高

1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。

2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。

(五)归纳总结练习反馈

引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。

本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助多媒体提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。

六、教学目标:

1、经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯。

2、掌握勾股定理和他的简单应用

重点难点:

重点:能熟练运用拼图的方法证明勾股定理

难点:用面积证勾股定理

教学过程

七、创设问题的情境,激发学生的学习热情,导入课题

我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形,并与同学交流。在同学操作的过程中,教师展示投影1(书中p7图1—7)接着提问:大正方形的面积可表示为什么?

(同学们回答有这几种可能:(1) (2) )

在同学交流形成共识之后,教师把这两种表示大正方形面积的式子用等号连接起来。

=请同学们对上面的式子进行化简,得到:即=

这就可以从理论上说明勾股定理存在。请同学们去用别的拼图方法说明勾股定理。

八、讲例

1、飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶正上方4000多米处,过20秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?

分析:根据题意:可以先画出符合题意的图形。如右图,图中△ABC的米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里的飞行路程,即图中的CB的长,由于直角△ABC的斜边AB=5000米,AC=4000米,这样的CB就可以通过勾股定理得出。这里一定要注意单位的换算。

解:由勾股定理得

即BC=3千米飞机20秒飞行3千米,那么它1小时飞行的距离为:

答:飞机每个小时飞行540千米。

九、议一议

展示投影2(书中的图1—9)

观察上图,应用数格子的方法判断图中的三角形的三边长是否满足

同学在议论交流形成共识之后,老师总结。

勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。

十、作业

1、 1、课文P11§ 1 、2

2、选用作业。

初二数学教案【第二篇】

教学目标

知识与技能目标

1.经历平行四边形判别条件的探索过程,发现平行四边形的常用判别条件。

2.掌握平行四边形的判别条件;对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形。

3.逐步掌握说理的基本方法。

过程与方法目标

1.在探索平行四边形的判别条件的过程中,发展学生的合情推理意识,主动探索的习惯。

2.鼓励学生用多种方法进行说理。

情感与态度目标

1.培养学生探索创新的能力,开拓学生思路,发展学生的思维能力。

2.培养学生合作学习,增强学生的自我评价意识。

教材分析

教材通过创设“钉制平行四边形框架”这一情境,便于学生发现和探索平行四边形的常用判别方法。如有条件可要求学生自己准备,由学生自我操作。也可由教师演示。

教学重点:平行四边形的判别方法。

教学难点:利用平行四边形的判别方法进行正确的说理。

学情分析

初二学生对平面图形的认识能力正在形成,抽象思维还不够,学习几何知识处于现象描述和说理的过渡时期。因此,对这部分内容的学习,要引导学生学会正确的说理,理清楚四边形在什么条件下用判定定理,在什么条件下用性质定理。

教学流程

一、创设情境,引入新课

师:请同学们拿出课前准备的小木条,帮助小明的爸爸钉制平行四边形的框架。

学生活动:学生按小组进行探索。

数学初二教案【第三篇】

一、教学目的:

1.掌握菱形概念,知道菱形与平行四边形的关系.

2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.

3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.

4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.

二、重点、难点

1.教学重点:菱形的性质1、2.

2.教学难点:菱形的性质及菱形知识的综合应用.

三、课堂引入

1.(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?

2.(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.

菱形定义:有一组邻边相等的平行四边形叫做菱形.

强调 菱形(1)是平行四边形;(2)一组邻边相等.

让学生举一些日常生活中所见到过的菱形的例子.

四、例习题分析

例1(补充)已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.

求证:∠AFD=∠CBE.

证明:∵四边形ABCD是菱形,

∴ CB=CD,CA平分∠BCD.

∴∠BCE=∠DCE.又CE=CE,

∴△BCE≌△COB(SAS).

∴∠CBE=∠CDE.

∵ 在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC

∴ ∠AFD=∠CBE.

例2(教材P108例2)略

五、随堂练习

1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.

2.已知菱形的两条对角线分别是6cm和8cm,求菱形的周长和面积.

3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.

4.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.

六、课后练习

1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为8cm,求菱形的高.

2.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC的长度;(2)菱形ABCD的面积.

八年级数学教案【第四篇】

教学建议

1、平行线等分线段定理

定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等。

注意事项:定理中的。平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成。

定理的作用:可以用来证明同一直线上的线段相等;可以等分线段。

2、平行线等分线段定理的推论

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。

推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。

记忆方法:“中点”+“平行”得“中点”。

推论的用途:(1)平分已知线段;(2)证明线段的倍分。

重难点分析

本节的重点是平行线等分线段定理。因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础。

本节的难点也是平行线等分线段定理。由于学生初次接触到平行线等分线段定理,在认识和理解上有一定的难度,在加上平行线等分线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意。

教法建议

平行线等分线段定理的引入

生活中有许多平行线等分线段定理的例子,并不陌生,平行线等分线段定理的引入可从下面几个角度考虑:

①从生活实例引入,如刻度尺、作业本、栅栏、等等;

②可用问题式引入,开始时设计一系列与平行线等分线段定理概念相关的问题由学生进行思考、研究,然后给出平行线等分线段定理和推论。

教学设计示例

一、教学目标

1、使学生掌握平行线等分线段定理及推论。

2、能够利用平行线等分线段定理任意等分一条已知线段,进一步培养学生的作图能力。

3、通过定理的变式图形,进一步提高学生分析问题和解决问题的能力。

4、通过本节学习,体会图形语言和符号语言的和谐美

二、教法设计

学生观察发现、讨论研究,教师引导分析

三、重点、难点

1、教学重点:平行线等分线段定理

2、教学难点:平行线等分线段定理

四、课时安排

l课时

五、教具学具

计算机、投影仪、胶片、常用画图工具

六、师生互动活动设计

教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习

七、教学步骤

复习提问

1、什么叫平行线?平行线有什么性质。

2、什么叫平行四边形?平行四边形有什么性质?

引入新课

由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线 ,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线 ,测量它被相邻横线截得的线段是否也相等?

(引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到平行线等分线段定理)

平行线等分线段定理:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等。

注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确。

下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证)。

已知:如图,直线 , 。

求证: 。

分析1:如图把已知相等的线段平移,与要求证的两条线段组成三角形(也可应用平行线间的平行线段相等得 ),通过全等三角形性质,即可得到要证的结论。

(引导学生找出另一种证法)

分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得 。

证明:过 点作 分别交 、 于点 、 ,得 和 ,如图。

∵ ,

又∵ , ,

为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示)。

引导学生观察下图,在梯形 中, , ,则可得到 ,由此得出推论 1。

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。

再引导学生观察下图,在 中, , ,则可得到 ,由此得出推论2。

推论2:经过三角形一边的中点与另一边平行的直线必平分第三边。

注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好。

接下来讲如何利用平行线等分线段定理来任意等分一条线段。

例 已知:如图,线段 。

求作:线段 的五等分点。

作法:①作射线 。

②在射线 上以任意长顺次截取 。

③连结 。

④过点 。 、 、 分别作 的平行线 、 、 、 ,分别交 于点 、 、 、 。

、 、 、 就是所求的五等分点。

(说明略,由学生口述即可)

总结、扩展

小结:

(l)平行线等分线段定理及推论。

(2)定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明。

(3)定理中的“平行线组”,是指每相邻两条平行线间的距离都相等的特殊平行线组。

(4)应用定理任意等分一条线段。

八、布置作业

教材P188中A组2、9

九、板书设计

十、随堂练习

教材P182中1、2

相关推荐

热门文档

20 361493