首页 > 学习资料 > 教案大全 >

八年级数学教案(精选4篇)

网友发表时间 298255

【路引】由阿拉题库网美丽的网友为您整理分享的“八年级数学教案(精选4篇)”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

八年级数学教案【第一篇】

教学目标:

1、掌握一次函数解析式的特点及意义

2、知道一次函数与正比例函数的关系

3、理解一次函数图象特点与解析式的联系规律

教学重点:

1、 一次函数解析式特点

2、 一次函数图象特征与解析式的联系规律

教学难点:

1、一次函数与正比例函数关系

2、根据已知信息写出一次函数的表达式。

教学过程:

Ⅰ.提出问题,创设情境

问题1 小明暑假第一次去北京.汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均车速是95千米/小时.已知A地直达北京的高速公路全程为570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.

分析 我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值,显然,应该探求这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是

s=570-95t.

说明 找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s是t的函数,t是自变量,s是因变量.

问题2 小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的存款与从现在开始的月份之间的函数关系式.

分析 我们设从现在开始的月份数为x,小张的存款数为y元,得到所求的函数关系式为:y=50+12x.

问题3 以上问题1和问题2表示的这两个函数有什么共同点?

Ⅱ.导入新课

上面的两个函数关系式都是左边是因变量y,右边是含自变量x的代数式。并且自变量和因变量的指数都是一次。若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称

y是x的正比例函数。

例1:下列函数中,y是x的一次函数的是( )

①y=x-6;②y=2x;③y=;④y=7-x x8

A、①②③B、①③④ C、①②③④ D、②③④

例2 下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?

(1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);

(2)长为8(cm)的平行四边形的周长L(cm)与宽b(cm);

(3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;

(4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).

(5)汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;

(6)圆的面积y(厘米2)与它的半径x(厘米)之间的关系;

(7)一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米) 分析 确定函数是否为一次函数或正比例函数,就是看它们的解析式经过整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此题必须先写出函数解析式后解答. 解 (1)a?20,不是一次函数. h

(2)L=2b+16,L是b的一次函数.

(3)y=150-5x,y是x的一次函数.

(4)s=40t,s既是t的一次函数又是正比例函数.

(5)y=60x,y是x的`一次函数,也是x的正比例函数;

(6)y=πx2,y不是x的正比例函数,也不是x的一次函数;

(7)y=50+2x,y是x的一次函数,但不是x的正比例函数

例3 已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值.若它是一次函数,求k的值.

分析 根据一次函数和正比例函数的定义,易求得k的值.

解 若y=(k-2)x+2k+1是正比例函数,则2k+1=0,即k=?

若y=(k-2)x+2k+1是一次函数,则k-2≠0,即k≠2.

例4 已知y与x-3成正比例,当x=4时,y=3.

(1)写出y与x之间的函数关系式;

(2)y与x之间是什么函数关系;

(3)求x=时,y的值.

解 (1)因为 y与x-3成正比例,所以y=k(x-3).

又因为x=4时,y=3,所以3= k(4-3),解得k=3,

所以y=3(x-3)=3x-9.

(2) y是x的一次函数.

(3)当x=时,y=3×=.

1. 2

例5 已知A、B两地相距30千米,B、C两地相距48千米.某人骑自行车以每小时12千米的速度从A地出发,经过B地到达C地.设此人骑行时间为x(时),离B地距离为y(千米).

(1)当此人在A、B两地之间时,求y与x的函数关系及自变量x取值范围.

(2)当此人在B、C两地之间时,求y与x的函数关系及自变量x的取值范围.

分析 (1)当此人在A、B两地之间时,离B地距离y为A、B两地的距离与某人所走的路程的差.

(2)当此人在B、C两地之间时,离B地距离y为某人所走的路程与A、B两地的距离的差.

解 (1) y=30-12x.(0≤x≤)

(2) y=12x-30.(≤x≤)

例6 某油库有一没储油的储油罐,在开始的8分钟时间内,只开进油管,不开出油管,油罐的进油至24吨后,将进油管和出油管同时打开16分钟,油罐中的油从24吨增至40吨.随后又关闭进油管,只开出油管,直至将油罐内的油放完.假设在单位时间内进油管与出油管的流量分别保持不变.写出这段时间内油罐的储油量y(吨)与进出油时间x(分)的函数式及相应的x取值范围.

分析 因为在只打开进油管的8分钟内、后又打开进油管和出油管的16分钟和最后的只开出油管的三个阶级中,储油罐的储油量与进出油时间的函数关系式是不同的,所以此题因分三个时间段来考虑.但在这三个阶段中,两变量之间均为一次函数关系.

解 在第一阶段:y=3x(0≤x≤8);

在第二阶段:y=16+x(8≤x≤16);

在第三阶段:y=-2x+88(24≤x≤44).

Ⅲ.随堂练习

根据上表写出y与x之间的关系式是:________________,y是否为x一的次函数?y是否为x有正比例函数?

2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。设每户每月用水量为x米3,应缴水费y元。(1)写出每月用水量不

超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。(2)已知某户5月份的用水量为8米3,求该用户5月份的水费。[①y=,y=,y是x的一次函数。②y==(元)]

Ⅳ.课时小结

1、一次函数、正比例函数的概念及关系。

2、能根据已知简单信息,写出一次函数的表达式。

Ⅴ.课后作业

1、已知y-3与x成正比例,且x=2时,y=7

(1)写出y与x之间的函数关系.

(2)y与x之间是什么函数关系.

(3)计算y=-4时x的值.

2、甲市到乙市的包裹邮资为每千克元,每件另加手续费元,求总邮资y(元)与包裹重量x(千克)之间的函数解析式,并计算5千克重的包裹的邮资.

3、仓库内原有粉笔400盒.如果每个星期领出36盒,求仓库内余下的粉笔盒数Q与星期数t之间的函数关系.

4、今年植树节,同学们种的树苗高约米.据介绍,这种树苗在10年内平均每年长高米.求树高与年数之间的函数关系式.并算一算4年后同学们中学毕业时这些树约有多高.

5、按照我国税法规定:个人月收入不超过800元,免交个人所得税.超过800元不超过1300元部分需缴纳5%的个人所得税.试写出月收入在800元到1300元之间的人应缴纳的税金y(元)和月收入x(元)之间的函数关系式.

八年级数学教案【第二篇】

学习目标:

1、知道线段的垂直平分线的概念,探索并掌握成轴对称的两个图形全等,对称轴是对称点连线的垂直平分线等性质。

2、经历探索轴对称的性质的活动过程 ,积累数学活动经验,进一步发展空间观念和有条理地思考和表达能力。

3、利用轴对称的基本性质解决实际问题。

学习重点:灵活运用对应点所连的线段被 对称轴垂直平分、对应线段相等、对应角相等等性质。

学习难点:轴对称的性质的理解和拓展运用。

学习过程 :

一、探索活动

如右图所示,在纸上任意画一点A,把纸对折,用针在 点A处穿孔,再把纸展开,并连接两针孔A、A.

两针孔A、A和线段AA与折痕MN之间有什么关系?

1、请同学们按要求画点、折纸、扎孔,仔细观察你 所做的图形,然后研究:两针孔A、A与折痕MN之间有什么关系?线段AA与折痕MN之间又有什么关系呢?两针孔A、A ,直线MN 线段AA.

2、那么 直线MN为什么会垂直平分线段AA呢?

3.垂直并且平分一条线段的直线,叫做线段的垂直平分线(mi dpoint perpendicular).

例如,如图,对称轴MN就是对称点A、A连线(即线段AA)的垂直 平分线。

4.如图,在纸上再任画一点B,同样地,折纸、穿孔、展开,并连接AB、AB、BB.线段AB与AB有什么关系?线段BB与MN 有什么关系?

5.如图,再在纸上任画一点C,并仿照上面进行操作。

(1)线段AC与 AC有什么关系 ? BC与BC呢?线段CC与MN有什么关系?

(2)A与A有什么关系? B与B呢? △ABC 与△ABC有什么关系?为什么?

(3)轴对称有哪些性质?

6.轴对称的性质:

(1)成轴对称的两个图形全等。

(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。

二、例题讲解

例1、(1)如图,A 、B、C、D的对称点分别是 ,线段AC、AB的对应线段分别是 ,CD= , CBA= ,ADC= .

(2)连接AF、BE,则线段AF、BE有什么关系?并用测量的方法验证。

(3)AE与BF平行吗?为什么?

(4)AE与BF平行,能说明轴对称图形对称点的连线一定 互相平行吗?

(5)延长线段BC、FG,作直线AB、EG,你有什么发现吗?

初中数学八年级教案案例【第三篇】

探索勾股定理(一)

教学目标:

1、 经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、 探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

重点难点:

重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

难点:勾股定理的发现

教学过程

一、 创设问题的情境,激发学生的学习热情,导入课题

出示投影1 (章前的图文 p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示投影2 (书中的P2 图1—2)并回答:

1、 观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。

正方形B中有_______个小方格,即A的面积为______个单位。

正方形C中有_______个小方格,即A的面积为______个单位。

2、 你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:

3、 图1—2中,A,B,C 之间的面积之间有什么关系?

学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的,C 的关系呢?

二、 做一做

出示投影3(书中P3图1—4)提问:

1、图1—3中,A,B,C 之间有什么关系?

2、图1—4中,A,B,C 之间有什么关系?

3、 从图1—1,1—2,1—3,1|—4中你发现什么?

学生讨论、交流形成共识后,教师总结:

以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

三、 议一议

1、 图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?

2、 你能发现直角三角形三边长度之间的关系吗?

在同学的交流基础上,老师板书:

直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”

也就是说:如果直角三角形的两直角边为a,b,斜边为c

那么

我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

3、 分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)

四、 想一想

这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?

五、 巩固练习

1、 错例辨析:

△ABC的两边为3和4,求第三边

解:由于三角形的两边为3、4

所以它的第三边的c应满足 =25

即:c=5

辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题

△ ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。

(2)若告诉△ABC是直角三角形,第三边C也不一定是满足 ,题目中并为交待C 是斜边

综上所述这个题目条件不足,第三边无法求得。

2、 练习P7 § 1

六、 作业

课本P7 § 2、3、4

八年级数学教案【第四篇】

教学目标

知识与技能

用二元一次方程组解决有趣场景中的数字问 题和行程问题,归纳用方程(组)解决实际问题的一般步骤。

过程与方法

1.通过设置问题串,让学生体会分析复杂问题的思考方法。

2.让学生进一步经历和体验列方程组解决实际问题的过程,体会方程组是刻画现实世界 的有效数学模型。

情感态度与价值观

在学习过程中让学生体验把复杂问题化为简单问题的策略,体验成功感,同时培养学生克服困难的意志和勇气, 树立自信心,并鼓励学生合作 交流,培养学生的团队精神。

教学重点

1.初步体会列方程组解决实际问题的步骤。

2.学会用图表 分析较复杂的数量关系问题。

教学难点

将实际问题转化 成二元一次方程组的数学模型;会用图表分析数 量关系。

教学准备:

教具:教材,课件,电脑(视频播放器)

学具:教材,练习本

教学过程

第一环节:复习提问(5分钟,学生口答)

内容:填空:

(1)一个两位数,个位数字是 ,十位数字是 ,则这个两位数用代数式表示为 ;若交换个位和十位上的数字得到一个新的两位数,用代数式表示为。

(2)一个两位数,个位上的数为 ,十位上的数为 ,如果在它们之间添上一个0,就得到一个三位数,这个三位数用代数式可以表示为 。

(3)有两个两位数 和 ,如果将 放在 的左边,就得到一个四位数,那么这个四位数用代数式表示为 ;如果将 放在 的右边,将得到一个新的四位数,那么这个四位数用代数式可表示为。

第二环节:情境引入(10分钟,学生动脑思考,全班交流)

内容:小明爸爸骑着摩托车带着小明在公路上匀速行驶,下图是小明每隔1小时看到的里程情况。你能 确定小明在12:00时看到的里程碑上的数吗?

第三环节:合作学习(10分钟,小组讨论,找等量关系,解决 问题)

内容:例1

两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数。已知前一个四位数比后一个四位数大2178,求这两个两位数。

学生先独立思考例1,在此基础上,教师根据学生思考情况组织交流与讨论。

第四环节:巩固练习(10分钟,学生尝试独立解决问题,全班交流)

内容:练习

1.一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字 之和,商是5,余数是1。这个两位数是多少?

2.一个两位数是另一个两位数的3倍,如果把这个两位数放在另一个两位数的左 边与放在右边所得的数之和为8484.求这个两位数。

第五环节:课堂小结(5分钟,教师引导学生总结一般步骤)

内容:

1.教师提问:本节课我们学习了那些内容,对这些内容你有什么体会和想法?请与同伴交流。

2.师生互相交流总结出列方程(组)解决实际问题的一般步骤。

第 六环节:布置作业

内容:习题

A组(优等生) 2,3,4

B组(中等生)2、3

C组(后三分之一生)2

相关推荐

热门文档

20 298255