平行线的性质教案【通用5篇】
【阅读指引】阿拉题库网友为您分享整理的“平行线的性质教案【通用5篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
平行线的性质教案【第一篇】
教学目标:
(1)知识与技能:
探索平行线的性质定理,并掌握它们的图形语言、文字语言、符号语言;会用平行线的性质定理进行简单的计算、证明。
(2)过程与方法:
在定理的学习中,锻炼观察能力,尝试与他人合作开展讨论、研究,并表达自己的见解。
(3)情感态度、价值观:
在课堂练习中,体验几何与实际生活的密切联系。
教学重点:
平行线的性质。
教学难点:
平行线的性质定理与判定定理的区别。
教学模式:
发现教学模式。
教学方法:
直观教学法、发现教学法、主体互动法。
教学手段:
计算机辅助教学。
教学过程:
教学环节
教师活动
学 生活 动
教 学 意 图
复习提 问
复习提问:
判定两直线平行的方法有哪些?怎样用符号语言表述?
思考、回答
了解学生的认知基础,让全体学生对前一节的内容进行回顾,并为新课的学习做准备。
进行新课进行新课
大屏幕请每位同学利用手中的条格纸,任意选取其中的两条线作l1、l2,再随意画一条直线l3与l1、l2相交,用量角器量得图中的八个角,并填表(见附录1)
随后同桌同学交换,再次测量、填表。
关注:
对于没有带量角器的学生,鼓励他们在无需测量的。情况下,找出图中各角的度量关系。
画图、测量、填表
思考、动手尝试,方法可能多种多样
激发学生探究数学问题的兴趣,使学生获得较强的感性认识,便于探索两直线平行的性质定理。关注学生的实际操作,以及操作中的思考和学生学习数学的兴趣。
给学生留有充分的探索和交流的空间,鼓励学生利用多种方法探索,这对于发展学生的空间观念,理解平行线的性质是十分重要的。
提问能否将我们发现的结论给予较为准确的文字表述?
总结、表述
锻炼学生的归纳、表达能力,鼓励学生敢于发表自己的观点。
大屏幕平行线的性质:
定理1。两条平行线被第三条直线所截,同位角相等。简言之: 两直线平行,同位角相等。
定理2。两条平行线被第三条直线所截,内错角相等。简言之: 两直线平行,内错角相等。
定理3。两条平行线被第三条直线所截,同旁内角互补。简言之: 两直线平行,同旁内角互补。
提问讨论这些性质定理与前面所学的判定定理有什么不同?
理解、记忆、思考、讨论、回答
进行文字语言的规范。
避免出现概念的混淆,渗透“命题” 与“逆命题”的概念,突破本节课的难点避免出现概念的混淆,突破本节课的难点。
提问回忆平行线判定定理的符号语言的表述,参照附录1的图形,将上述性质定理怎样用符号语言表达出呢?
大屏幕符号语言:(不唯一)
性质定理1。∵l1∥l2
∴∠1=∠5 (两直线平行,同位角相等)
性质定理1。∵l1∥l2
∴∠3=∠5 (两直线平行,内错角相等)
性质定理1。∵l1∥l2
∴∠3+∠6=180o (两直线平行,同旁内角互补)
思考、一位同学板书。
观察、理解
为今后进一步学习推理打基础,并进行符号语言的规范。
提问我们能否使用平行线的性质定理1说出性质定理2、3成立的道理呢?
鼓励学生使用符号语言表述推导过程。
大屏幕规范定理的推导过程。
思考、尝试回答
观察
培养学生的逻辑思维能力以及严谨的治学态度。逐步锻炼学生的推理能力,并进一步巩固对定理的理解及语言的规范,感受成功的喜悦,树立学习数学的信心。
例题示范
大屏幕例:如图是一块梯形铁片的残余部分,量得∠A=100o,∠B=115o,梯形另外两个角分别是多少度?
思考、尝试运用符号语言进行推理。
要求学生会用平行线的性质进行计算,只需算出所求的度数即可。初次计算格式不一定很完整。
趣味练习
大屏幕(见附录2)
思考、讨论、解释结论
寓教于乐,进一步让学生感受“认识来源于实践”。
巩固练习
大屏幕巩固练习(见附录3)
积极思考、展开讨论、踊跃回答
循序渐进提高难度、提高灵活运用定理的能力,感受解决有关平行问题的关键,突破难点,并进一步提高用符号语言进行推理的能力。
拓展思路
大屏幕探究题(见附录4)
备注如果时间不允许的话,该题可作为课后作业,并给予简单的提示。
猜测、讨论,寻找规律
使重点中学学生的思路进一步得以拓宽,初次接触辅助线的添加,使学生能力得以提高。
课堂小结
提问本节课我们学习了哪些定理?在表述这些定理时,应注意什么呢?
回顾、归纳
将本节课知识进行回顾。
布置
作业
大屏幕布置作业:教材P67的4、5;P68的6、7;P69的11、12
课后完成
课后能进一步巩固,鼓励学生去发现身边的数学问题。
平行线的性质教案【第二篇】
一、创设实验情境,引发学生学习兴趣,引入本节课要研究的内容。
试验1:教师以窗格为例,已知窗户的`横格是平行的,用三角尺进行检验,发现同位角相等。这个结论是否具有一般性呢?
试验2:学生试验(发印制好的平行线纸单)。
(1)要求学生任意画一条直线c与直线a、b相交;
(2)选一对同位角来度量,看看这对同位角是否相等。
学生归纳:两条平行线被第三条直线所截,同位角相等。
二、主体探究,引导学生探索平行线的其他性质以及对命题有一个初步的认识。
活动1
问题讨论:
我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角。我们已经知道“两条平行线被第三条直线所截,同位角相等”。那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系?(分组讨论,每一小组推荐一位同学回答)。
教师活动设计:引导学生讨论并回答。
学生口答,教师板书,并要求学生学习推理的书写格式。
活动2
总结平行线的性质。
性质2:两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
性质3:两条平行直线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
平行线的性质教案【第三篇】
教学目的
1.使学生掌握平行线的三个性质,并能运用它们作简单的推理。
2.使学生了解平行线的性质和判定的区别。
重点难点
1.平行的三个性质,是本节的重点,也是本章的重点之一。
2.怎样区分性质和判定,是教学中的一个难点。
教学过程
一、引入
问:我们已经学习过平行线的哪些判定公理和定理?
学生齐答:
1.同位角相等,两直线平行。
2.内错角相等,两直线平行。
3.同旁内角互补,两直线平行。
问:把这三句话颠倒每句话中的前后次序,能得怎样的三句话?新的三句话还正确吗?
学生答:
1.两直线平行,同位角相等。
2.两直线平行,内错角相等。
3.两直线平行,同旁内角互补。
教师指出:把一句原本正确的话,颠倒前后顺序,得到新的一句话,不能保证一定正确。例如,“对顶角相等”是正确的,倒过来说“相等的角是对顶角”就不正确了。因此,上述新的三句话的正确性,需要进一步证明。
二、新课
平行线的性质一:两条平行线被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
怎样说明它的正确性呢?
方法一通过测量实践,作出两条平行线a∥b,再任意作第三条直线c,量量所得的同位角是否相等。
方法二从理论上给予严格推理论证。(以下证法,教师可视学生接受情况,灵活处理讲或者不讲)
已知:如图2-32,直线AB、CD、被EF所截,AB∥CD.
求证:∠1=∠2.
证明:(反证法)
假定∠1≠∠2,
则过∠1顶点O作直线A′B′使∠EOB′=∠2.
∴A′B′∥CD(同位角相等,两直线平行).
故过O点有两条直线AB、A′B′与已知直线CD平行,这与平行公理矛盾。即假定是不正确的。
∴∠1=∠2.
另证:(同一法)
过∠1顶点O作直线A′B′使∠E0B′=∠2.
∴A′B′∥CD(同位角相等,两直线平行).
∵AB∥CD(已知),且O点在AB上,O点在A′B′上,
∴A′B′与AB重合(平行公理)
∴∠1=∠2.
平行线的性质二:两条平线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
启发学生,把这句话“翻译”成已知、求证,并作出相应的图形。
已知:如图2-33,直线AB、CD被EF所截,AB∥CD,
求证:∠3=∠2.
证明:
∵AB∥CD(已知)
∴∠1=∠2(两直线平行,同位角相等).
∵∠1=∠3(对顶角相等),
∴∠3=∠2(等量代换).
说明:如果学生仿照性质一,用反证法或同一法去证,应该给以鼓励。并同时指出,既然性质一已证明正确,那么也可以直接利用性质一的结论,这样常常可以使证明过程简单些。然后介绍或引导学生得出上面的证法。
平行线的性质三:两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
要求学生仿照性质二,自己写出已知、求证、证明。教师请程度较好的学生上黑板板演,并巡视课堂,帮助有困难的学生克服困难,最后对黑板上学生的板书进行全班订正。
已知:如图2-34,直线AB、CD被EF所截,AB∥CD.
求证:∠2+∠4=180°.
证法一:
∵AB∥CD(已知),
∴∠1=∠2(两直线平行,同位角相等),
∵∠1+∠4=180°(邻补角),
∴∠2+∠4=180°(等量代换).
证法二:
∵AB∥CD(已知),
∴∠2=∠3(两直线平行,内错角相等).
∵∠3+∠4=180°(邻补角),
∴∠2+∠4=180°(等量代换).
例已知某零件形如梯形ABCD,现已残破,只能量得∠A=115°,∠D=100°,你能知道下底的两个角∠B、∠C的。度数吗?根据是什么?(如图2-35).
解:∠B=180°-∠A=65°,
∠C=180°-∠D=80°.(根据平行线的性质三)
小结:平行线的性质与判定的区别:
1.从因果关系上看
性质:因为两条直线平行,所以……;
判定:因为……,所以两条直线平行。
2.从所起作用上看
性质:根据两条直线平行,去证两角相等或互补:
判定:根据两角相等或互补,去证两条直线平行。
三、作业
1.如图,AB∥CD,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?
2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果∠B=40°,∠2=75°,那么∠1、∠3、∠C、∠BAC+∠B+∠C各是多少度,为什么?
3.如图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得到哪些角相等?并简述理由。
教后记:.
学生学习了这个平行线的性质后,不能理解它的用途,两直线平行不知道应该是哪些角应该相等,哪些角应该互补,哪个是前提哪个是结论不能充分的理解。导致使用的错误。应加强这方面的训练。学生图形的认识能力仍有待提高。
初中数学《平行线的性质》教案【第四篇】
今天我说课的题目是,这节课所选用的教材为北师大版义务教育课程标准八年级教科书。
一、教材分析
1、教材的地位和作用
本节教材是初中数学xx年级册的内容,是初中数学的重要内容之一。一方面,这是在学习了xx的基础上,对xx的进一步深入和拓展;另一方面,又为学习接下来的知识奠定了基础,是进一步研究xx的工具性内容。因此本节课在教材中具有承上启下的作用。
2、学情分析
学生在此之前已经学习了xx,对xx已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于xx的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
3、教学重难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:
难点确定为:
二、教学目标分析
根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:
1、知识与技能目标:2、过程与方法目标:3、情感态度与价值目标:
三、教学方法分析
本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
四、教学过程分析
为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1)复习就知,温故知新
设计意图:建构主义主张教学应从学生已有的知识体系出发,xx是本节课深入研究xx的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(2)创设情境,提出问题
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。
通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环。
(3)发现问题,探求新知
设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳。
(4)分析思考,加深理解
设计意图:数学教学论指出,数学概念(定理等)要明确其内涵和外延(条件、结论、应用范围等),通过对定义的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第xx环节。
(5)强化训练,巩固双基
设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课☆☆标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。
(6)小结归纳,拓展深化
小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生畅谈本节课的收获、
(7)当堂检测对比反馈
(8)布置作业,提高升华
以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
以上是我对本节课的见解,不足之处敬请各位评委谅解!谢谢。
平行线的性质教案【第五篇】
教学目标
1。经历从性质公理推出性质2的过程;掌握平行线的性质,并能用它们作简单的逻辑推理;
2。感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用。
教学重点
平行线的性质以及应用。
教学难点
平行线的性质公理与判定公理的区别。
对话设计
〖探索1〗反过来也成立吗
过去我们学过:如果两个数的和为0,这两个数互为相反数。反过来,如果两个数互为相反数,那么这两个数的和为0。这两个句子都是正确的。
现在换一个例子:如果两个角是对顶角,那么这两个角相等。它是对的。反过来,如果两个角相等,这两个角是对顶角。对吗?
再看下面的例子:如果一个整数个位上的数字是5,那么它一定能够被5整除。对吗?这句话反过来怎么说?对不对?
〖结论〗如果一个句子是正确的,反过来说(因果对调),就未必正确。
〖探索2〗
上一节课,我们学过:同位角相等,两直线平行。反过来怎么说?它还是对的吗?完成P21的探究,写出你的猜想。
〖推理举例〗
如果把平行线性质1———"两直线平行,同位角相等"看作是基本事实(公理),我们可以利用这个公理证明平行线性质2:"两直线平行,内错角相等"。
如图,已知:直线a、b被直线c所截,且a∥b,
求证:∠1=∠2。
证明:∵a∥b,
∴∠1=∠3(__________________)。
∵∠3=∠2(对顶角相等),
∴∠1=∠2(等量代换)。
〖探索3〗下面我们来证明平行线的性质3:两直线平行,同旁内角互补。请模仿范例写出证明。
如图,已知:直线a、b被直线c所截,且a∥b,
求证:∠1+∠2=180?。
证明:
〖探索4〗
如图:直线a、b被直线c所截,
(1)若a∥b,可以得到∠1=∠2。根据什么?
(2)若∠1=∠2,可以得到a∥b。根据什么?根据和(1)一样吗?
〖练习1〗如图,已知直线a、b被直线c所截,在括号内为下面各小题的'推理填上适当的根据:
(1)∵a∥b,∴∠1=∠3(___________________);
(2)∵∠1=∠3,∴a∥b(_________________)。
(3)∵a∥b,∴∠1=∠2(__________________);
(4)∴a∥b,∴∠1+∠4=180?
(_____________________________________)
(5)∵∠1=∠2,∴a∥b(___________________);
(6)∵∠1+∠4=180?,∴a∥b(_______________)。
〖练习2〗
画两条平行线,说出你画图的根据;再任意画一条直线和这两条平行线都相交,写出所生成的角当中的一对内错角,并说明这一对角一定相等的理由。
〖作业〗
P25。1、2、3、4。