首页 > 学习资料 > 教案大全 >

实用一元一次方程教案【范例4篇】

网友发表时间 193581

【序言】由阿拉题库最美丽的网友为您整理分享的“实用一元一次方程教案【范例4篇】”教案资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!

《一元一次方程》的优秀教案【第一篇】

一、教材分析

(一)教材的地位和作用

本节内容是一元一次方程应用的延伸与拓展,它进一步让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,同时又渗透了函数与不等式的思想,为以后内容学习奠定了必要的数学基础,本节内容具有承上启下的作用.学生能深刻地认识到方程是刻画现实世界有效的数学模型,领悟到“方程”的数学思想方法.总之,本节内容无论在知识上还是在数学思想方法上,都是十分很好的素材,能很好培养学生的探索精神、应用意识以及创新能力。

(二)教材的重难点

本节的重点是探索并掌握列一元一次方程解决实际问题的方法.而方程的建模思想学生还是初步接触,寻找相等关系对学生来说仍相当困难,所以确定“找出已知量与未知量之间的关系,尤其是相等关系”为本节的难点之一,列方程解应用题的最终目标是运用方程的解对客观现实作出合理的解释,这是本节的难点之二。

二、教学目标分析

(一)知识技能目标

1.目标内容

(1)结合生活实际,会在独立思考后与他人合作,结合估算和试探,列出一元一次方程解决本节的三个实际问题,并能解释结果的实际意义及其合理性.

(2)培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.

2.目标分析

(1)本节的内容就是通过列方程、解方程来解决实际问题,这是必须掌握的知识,估算与试探的思维方法也很重要,这是发现和解决问题的有效途径.

(2)七年级的学生对数学建模还比较陌生,建模能突出应用数学的意识,而探索精神和合作意识又是课标所大力倡导的,因而必须加强培养学生这方面的能力.

(二)过程目标

1.目标内容

在活动中感受方程思想在数学中的作用,进一步增强应用意识.

2.目标分析

利用方程解决问题是有用的数学方法,学生在前两节的数学活动中,有了一些初步的经验,但是更接近生活,更富有挑战性的问题则需要师生合作,探索解决。

(三)情感目标

1.目标内容

(1)在探索中获得成功的体验,激发学生学习数学的热情,享受与他人合作的乐趣,建立自信心。

(2)通过对实际问题的解决,进一步体会“数学来源于生活,且服务于生活”的辩证思想。

2.目标分析

七年级学生的年龄特征决定了他们好奇心强、思想活跃、求知心切.利用教材培养学生良好的学习习惯、方法和品质,这是落实新课标倡导的教育理念的关键.

三、教材处理与教法分析

本节内容拟定两课时完成,今天说课的内容是第一课时(探究Ⅰ、探究Ⅱ).根据本节课的特点及七年级学生的心理特征和认知特征,本节课采用探索发现法进行教学,在活动中充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者.本课借助多媒体辅助教学,给学生以直观形象的演示,增强感性认识,增强教学效果.课中以设疑提问、分组活动等方式,激发学生的兴趣,引导学生自主探索与合作交流,主动获得知识。

元一次方程教案【第二篇】

一、说教材

方程是应用非常广泛的数学工具,它在义务教育阶段的数学课程中占重要地位。本节课的教学内容是《解一元一次方程》的第3课时。解方程既是本章的重点也为今后学习其他方程、不等式及函数有重要基础作用。为了使学生牢固掌握解方程体会方程是刻画现实世界的一个有效的数学模型,产生学习解方程的欲望,教材设置了新颖的问题情境,让学生从具体的情境中获取信息,列方程,然后尝试主动探究方程的`解法。并通过练习归纳掌握解方程的基本步骤和技能。

1、教学目标

(1)、知识目标:1、掌握解一元一次方程中"去分母"的方法,并能解这种类型的方程·

2、了解一元一次方程解法的一般步骤·

(2)、能力目标:经历"把实际问题抽象为方程"的过程,发展用方程方法分析问题、解决问题的能力,

(3)、情感目标:1、通过具体情境引入新问题(如何去分母),激发学生的探究欲望

2、通过埃及古题的情境感受数学文明。

2、教学重点:通过"去分母"解一元一次方程

3、教学难点:探究通过"去分母"的方法解一元一次方程

二、说教法:

在前面的学段中,学生已学习了合并同类项、去括号等整式运算内容。解一元一次方程就成为承上启下的重要内容。因此,它既是重点也是难点。我根据学生认识规律和教学的启发性、直观性和面向全体因材施教等教学原则,积极创设新颖的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程。

我的教学设计的指导思想是:

1、让学生自己去尝试发现问题,而不是被动的回答老师的问题、接受老师的答案。

2、精心设计问题,因为好的问题设计能不断激发学习动机,还能给学生提供学习的目标和思维的空间,使学生自主学习真正成为可能。授课中通过一系列层层递进的问题,给学生充分的时间和广阔的思维空间,充分表达自己的想法,在此基础上解决问题并得出结论。

三、说学法

教学活动流程图活动内容和目的

活动1列方程解决实际问题创设埃及古题问题情境,列方程解决该问题;发展利用方程方法解决简单实际问题的能力,再次感受方程是刻画现实世界量与量之间关系的主要模型之一·

活动2解含有分母的一元一次方程以学生已有的关于等式性质的数学知识基础,探索利用“去分母"的方法解一元一次方程·

活动3"去分母"的方法解一元一次方程用"去分母"的方法解一元一次方程,掌握"去分母"的方法解一元一次方程应注意的事项;归纳一元一次方程解法的一般步骤·

活动4小结总结本节收获

元一次方程教案【第三篇】

教学目标

知识与技能

1.理解一元一次方程及解的概念。

2.建立实际问题的方程模型,运用一元一次方程分析和解决实际问题。

过程与方法

通过学生观察、独立思考等过程,培养学生归纳、概括的能力。

情感态度

培养学生由算术解法过渡到代数解法解方程的基本能力,渗透化未知为已知的重要数学思想。

教学重点

体会方程模型的重要性,了解一元一次方程的概念。

教学难点

正确理解方程作为实际问题的数学模型的作用。

教学过程

一、情景导入,初步认知

在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用方程来解决呢?若能解决,怎样解?用方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

为了回答上述这几个问题,我们先来了解一下方程。

教学说明 引起学生的学习兴趣,激发学生的求知欲。

二、思考探究,获取新知

1.请你表示出下面两个问题中的等量关系。

(1)如图,甲、乙两站的高速铁路长1068,“和谐号”高速列车从甲站开出后,离乙站还有318,该高速列车的平均速度是多少?

(2)如图,这是一个长方体形的包装盒,长为 ,高为1 ,表面积为 2,这个包装盒的底面宽是多少?

问题(1)的等量关系是:已行驶的路程+剩余的`路程=全长。设高速列车的平均速度是x /h,我们可以用含x的式子表示上述等量关系,即+318=1 068.

问题(2)的等量关系是:底面积+侧面积=表面积。若设包装盒的底面宽是 ,则等量关系可表示为:××2+×1×2+×1×2=,即:+2+=

教学说明 引导学生分析问题,用文字表示题目中的等量关系式。再根据等量关系式列出式子。

2.观察所列出的两个等式,它们有什么共同特征?

归纳结论 我们把含有未知数的等式叫做方程。

像上面这样,把所要求的量用字母x(……)表示,根据问题中的等量关系列出方程,这一过程叫做建立方程。

3.思考:对于+318=1 068,+2+=方程,有几个未知数,每个未知数的次数是多少?

教学说明 组织学生进行全班交流,得出以上方程的特点是:(1)方程中不含分母或分母中不含未知数;(2)只含有一个未知数;(3)未知数的指数都是1.

归纳结论 只含有一个未知数,并且未知数的次数是1的整式方程叫做一元一次方程。

4.方程的解。

在方程x+5=8中,当x=3时,方程两边的值相等,我们就说x=3是方程x+5=8的解。

归纳结论 能使方程左右两边的值相等的未知数的值叫做方程的解。

教学说明 了解方程的解的含义;判断是否为方程的解的方法:将解带入原方程,分别计算左边和右边,看是否相等,相等则为原方程的解。

三、运用新知,深化理解

1.教材P84例1.

2.下列方程中,是一元一次方程的是( B )

=3 =0

+2= =

3.下列方程中解是x=1的方程是( C )

=+5=2x-4

=+2=4x-3

4.下列各数中是方程4x-5=7的解的是( B )

C.-3

5.某品牌电饭煲成本价为x元,销售商对其定价为350元,若按8折销售仍可获利15元,根据题意,下面所列方程正确的是( A )

×=×8-x=15

×=×8=x-15

6.以x=-3为解的方程是( D )

==-x

+8=-+7=4x+16

7.在下列方程中:①x+2=3,② -3x=9,③ =+ ,④ x=0,是一元一次方程的有 ③④ (只填序号).

8.已知方程(-2)x||-1+3=-5是关于x的一元一次方程,则= -2 .

9.若方程(2-1)x2-x+8=x是关于x的一元一次方程,求代数式2 006-∣-1∣的值。

解:由一元一次方程的定义可知:

2-1=0

=±1

当=1时,2 006-∣-1∣=2 006;

当=-1时,2 006-∣-1∣=-2 008.

10.检验下面方程后面括号内所列各数是否为这个方程的解。

2(x+2)-5(1-2x)=-13,{x= -1,1}

解:将x=-1代入方程的两边得

左边=2(-1+2)-5[1-2×(-1)]=-13

右边=-13

因为左边=右边,所以x=-1是方程的解。

将x=1代入方程的两边得

左边=2(1+2)-5(1-2×1)=11

右边=-13

因为左边≠右边,所以x=1不是方程的解。

11.建立下列各问题中的方程模型。

(1)小明去商店买练习册,回来后告诉同学:“店主告诉我,如果多买些就可以享受8折优惠,我就买了20本,结果总共便宜了元,你猜原来每本练习册的价格是多少元?”

解:设原来每本练习册的价格为x元

20(1-80%)x=

(2)张强与刘伟参加植树活动,两人共植树75棵,其中张强比刘伟多植了15棵树。那么刘伟植了多少棵树?

解:设刘伟植了x棵,则可列方程

x+15+x=75

(3)甲队有32人,乙队有28人,现在从乙队抽调一些人到甲队,使甲队人数是乙队人数的2倍。问应该从乙队抽调多少人?

解:设应该从乙队抽调x人。则可列方程

32+x=2×(28-x)

(4)某车间原计划用13小时生产一批零件,后来每小时多生产10件,用了12小时,不但完成任务,而且还多生产60件,问原计划每小时生产多少个零件?

解:设原计划每小时生产x个零件,则所列方程为

12(x+10)=13x+60

教学说明 对本节知识进行巩固练习。

四、师生互动、课堂小结

先小组内交流收获和感想而后以小组为单位派代表进行总结。教师作以补充。

课后作业

布置作业:教材“习题”中第2、3题。

元一次方程教案【第四篇】

一、教学目标:

1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

2、通过观察,归纳一元一次方程的概念

3、积累活动经验。

二、重点和难点

重点:归纳一元一次方程的概念

难点:感受方程作为刻画现实世界有效模型的意义

三、教学过程

1、课前训练一

(1)如果 || = 9,则= ;如果2 = 9,则=

(2)在数轴上距离原点4个单位长度的数为

(3)下列关于相反数的说法不正确的是( )

A、两个相反数只有符号不同,并且它们到原点的距离相等。

B、互为相反数的两个数的绝对值相等

C、0的相反数是0

D、互为相反数的两个数的和为0(字母表示为、互为相反数则)

E、有理数的相反数一定比0小

(4)乘积为1的两个数互为 倒数 ,如:

(5)如果,则( )

A、互为倒数

B、互为相反数

C、都是0

D、至少有一个为0

2、由课本P149卡通图画引入新课

3、分组讨论P149两个练习

4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:( )

A、+25=310 B、+(+25)=310 C、2 [+(+25)]=310 D、[+(+25)]2=310

课本的宽为3厘米,长比宽多4厘米,则课本的面积为 平方厘米。

5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回元。已知每个笔记本比练习本贵元,求每个练习本多少元?

解:设每个练习本要元,则每个笔记本要 元,依题意可列得方程:

6、归纳方程、一元一次方程的概念

7、随堂练习PO151

四、课外作业

P151习题

相关推荐

热门文档

20 193581