四年级数学上册教案通用4篇
【导言】此例“四年级数学上册教案通用4篇”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
小学四年级数学优秀教案【第一篇】
教学内容:
神奇的计算工具
教学目标:
1、认识并会使用计算器
2、从身边算起,巩固计算器的使用方法。
3. 适当进行环保教育
教学重点:
认识并熟练使用计算器。
教学难点:
熟练运用计算器。
教学过程:
一、引入。
1. 同学们,你们知道远古时代,都有哪些计数或计算的工具么?
随着科学技术的发展,现在我们可以用哪些计算工具来进行计算?
2、问:在日常生活中,你在哪见过计算器?
3、小结:可见,在日常生活中计算器已经被广泛的使用了,那么,这节课我们就来了解一下计算器这个神奇的计算工具,并利用它解决一些生活中的问题。 板题:神奇的计算工具。
二、展开。
1、认识计算器
同学们每人都带来了计算器,各种品牌的计算器,大小、功能都不太一样,我们来看一看,这个计算器的功能比较复杂,而这一个比较简单。今天我们就来认识数字区、加减乘除符号区和开关键、归零键这些基本的按键,其它按键以后再学习。今天我就想请你以推销员的身份来介绍你的计算器。试想,如果你是这个品牌计算器的推销员,你应如何介绍这个计算器的基本按键和使用方法,使用方法可以举一个例子计算演示。
比一比谁是秀的推销员,优秀推销员的标准为
(1)声音洪亮,语言能够表述清楚
(2)能够有条理的进行介绍,两人一小组试推销,互相取长补短。
2、比赛
作为一个优秀的销售人员不但要有非常棒的口才,还要有良好的计算功底,接下来我们将进行一场计算比赛,请听清要求,女生先用口算进行计算,男生用计算器进行计算,请在规定的时间内完成老师指定的题目,并把答案记录在口算卡上,算完后马上起立,比一比口算速度快,还是计算器的速度快?
出示
第一组:15+23=
82-62=
1000×5=
第二组:7861+3492=
35×21=
6300-2145=
师问:那么,什么样的计算用口算比较快,什么样的计算用计算器比较快呢?
总结:并不是所有的计算都用计算器比较快,对于比较简单的算式来说用口算更方便、更准确
请你用合适的计算方式来计算下题:
1002-63
4698+1836
×60
1596÷38
汇报:每道题分别用哪种计算方式来算的?结果是多少?
不要所有题都依赖于计算器,同学们还是要勤于思考,善于动脑,这样大脑才能越来越灵活。3.环保问题。
在我们身边存在着许多数学问题,这些问题的数据是“不算不知道,一算吓一跳。”
出示:“据统计,一个没有关紧的水龙头,每天大约浪费16千克的水。照这样计算一年(按365天计算),要浪费多少千克的水?”
现在我们把这些水利用起来:“把这些水装在饮水桶中(每桶水约重20千克),大约能装多少桶?”
你家每月要喝几桶水?
“算算这些水够你家喝几个月?合多少年?”
合作要求
(1)先想一想,再在本上试着进行计算
(2)如果有困难,四个人可以进行讨论,最后由一人进行汇报。
看到这个数字你有什么感想?
教师:看似不经意的一滴滴水,积累起来就够一家子喝上几年的。通过这组数据的计算,你有什么感想吗?
小结:有句宣传词这么说:“当世界上只剩下最后一滴水的时候,那就是自己的眼泪!”想想,那将是多么可怕的事。通过计算器的计算,使我们懂得了要保护好人类赖以生存的水资源。
3、身边算起。
那么你最想用它来算算身边的什么呢?
课前以同桌四人为一组,调查了一些数据。现在就来汇报一下你们最想算什么。(汇报)
四人一组,用计算器来算一算你最想知道的数据吧!
问:哪一组愿意来说一说你们计算的情况?
一人说题目,一人汇报,一人补充。
三、小结
通过今天这节课,你学到了什么?
四、总结
计算器发展到今天,还有许多不足的地方,老师希望你们读好今日书,成为明日之才,去更好的完善计算器的功能。
小学四年级数学优秀教案【第二篇】
教学目标:
1、认识并会使用计算器。
2、会利用计算器探索一些数学规律。
教学重点:
认识并会使用计算器。
教学难点:
会利用计算器探究一些数学规律。
教学过程:
一、提示课题
1.教师取出电子计算器,让学生也拿出自己的计算器。教师:猜一猜,今天,这一节刘我们一起学习什么?学生:认识计算器。
2.教师:你知道如何使用计算器吗?
二、引导探索
1.让学生说一说他自己所掌握的使用计算器的方法。
2. 认识一些功能键。
由学生来说明。
集中说明一些功能键的作用。
①开关及清除键。按一下此键,打开计算器,再按一下就关赣计算器。
②运处符号键。只要介绍“+、-、×、/“键的使用方法。
③数学键数字键的使用。如按1 2 。显示屏就显示“1 2”。
④等号键按下数字键及运算符号键后,按下此键,显示屏就显示出输入算式的计算结果。
⑤小数点键按下此键,就呈现一个小数点还可以向学生介绍如:时间键、日期键、括号键、存储运算键等。
3. 尝试练习。
(1)计算25×4 操作过程:输入25→×→4→=,屏幕上呈现100,就是计算的结果。
(2)计算一份菜单的价钱。
①呈现:酒;14元 凉拌豆腐:3元
肉丝:5元 青菜:3元
清蒸鱼16元 三鲜汤:12元 甜点8元
②让学生用计算器计算。
③反馈计算结果。
4. 探索一些数学规律。
(1)呈现计算题。
①1+2+3+4……+98+99+100
②999×9、9999×9、99999×9
(2)让学生独立用计算器计算,教师巡视课堂。
(3)反馈计算结果。
(4)引导提问:通过计算,你有什么发现(特别指导观察第②题中各算式的计算结果,并进行比较)?你有什么感想和体会?发现:积的个位都是1;积的位都是8;中间几位数都是9,9的个数比第1个因数中的9个数少一个。接着,让学生说一说以下几个算式的结果。
999999×9、9999999×9、99999999×9 通过以上活动,让学生观察计算结果、发现规律,同时突出了运用简便方法计算很可能比计算器还要快定眯,充分体现了计算方法的灵活性,也提高了学生的学习兴趣。
三、课堂活动课本第36页的“练一练”。
四年级数学教案【第三篇】
教学目标
1. 使学生知道素数与合数的意义,会判断一个数是素数还是合数,会将自然数按因数的个数进行分类。
2. 使学生在探究活动中,进一步培养观察、比较、分析和归纳能力,感受数学文化的魅力,培养勇于探索的精神。
教学过程
一、 创设情境,激趣引入
谈话:同学们,今天先向大家介绍一个世界数学史上著名的猜想。
课件播放:哥德巴赫是200多年前德国的数学家,他提出了一个伟大的猜想任何一个大于4的偶数都可以表示成两个奇素数的和。另一个大数学家欧拉又补充指出:任何大于2的偶数都是两个素数之和。这一猜想被称为哥德巴赫猜想。虽然人们知道这一猜想是正确的,但一直没能从理论上加以证明。数学家们把这一猜想称为数学皇冠上的明珠。我国数学家王元、潘承洞、陈景润先后在哥德巴赫猜想的证明上取得了重大进展,特别是陈景润所取得的研究成果,轰动了国内外数学界,被公认为是最具有突破性和创造性的,是当代在哥德巴赫猜想的研究和证明方面最好的成果。
提问:看了上面的短片,你想到了什么?有什么问题想问吗?(学生可能提出什么样的数是素数等问题)
谈话:大家想知道什么样的数是素数吗?我们今天就一起来研究这一问题。(板书:素数)
[评析:通过介绍哥德巴赫猜想的有关史料,很自然地把学生的注意力集中到素数的概念上,激发了学生进一步探索和发现的欲望。同时,学生能从中感受到数学的奇妙与魅力,产生对数学的兴趣。]
二、 设疑引探,自主建构
1. 操作感受。
谈话:我们来做个实验。请同学们拿出信封里的小正方形,小组分工合作,分别用2个、3个、4个、6个、7个、11个、12个小正方形拼长方形,看看拼出的结果怎样。
学生在小组内活动,教师巡视并指导。
引导:仔细观察拼出的结果,你发现了什么?
通过比较学生会发现:用2个、3个、7个或11个小正方形拼长方形,只有一种拼法;用4个、6个或12个小正方形拼长方形,可以有两种或两种以上的拼法。
提问:为什么用2个、3个、7个或11个小正方形拼长方形只有一种拼法,而用4个、6个或12个小正方形拼长方形可以有两种或两种以上的拼法呢?(2、3、7或11只有两个因数,而4、6或12都有三个或三个以上的因数)
[评析:数学教学不仅要注重数学知识和技能的传授,更要让学生经历知识的形成过程。实验环节的设计,能引导学生在操作活动中自主发现自然数因数个数的特点,初步感知素数和合数的概念。]
2. 分类建构。
谈话:请同学们先在自己的练习本上写出1~20,并找出每一个数的所有因数,然后根据每个数因数的个数,将它们进行分类。
学生活动,教师巡视。
反馈:根据每个数因数的个数,你把这些数分成了几类?是哪几类?(根据每个数因数的个数,可以把它们分成三类:一类是只有两个因数的;一类是有三个或三个以上因数的;1只有一个因数,分为一类)
提问:只有两个因数的数,它们的因数有什么特点?(两个因数分别是1和它本身)
提问:有三个或三个以上因数的数,它们的因数有什么特点?(除了1和它本身外,还有其他的因数)
再问:为什么把1单独分为一类?(1是一个很特殊的数,它只有1个因数)
谈话:同学们通过自己的活动把自然数分成了三类,并总结出了这三类数的不同特点,那么,它们分别叫什么数呢?打开课本第78页,把例题认真地读一读,填一填,并和同桌的同学说一说你知道了什么。
学生自学课本之后,师生共同揭示素数和合数的概念(补充板书:和合数),同时明确1既不是素数,也不是合数。
提问:在2~20各数中,哪些数是素数?哪些数是合数?
[评析:让学生写出1~20各数的所有因数,并根据每个数因数的个数进行分类,为学生的自主探索留出了足够的时间和空间,提高了学生的参与度,突出了学生的主体地位。接着通过对三个问题的讨论,引导学生深入思考,发现素数和合数的特点。自学课本,既及时准确地揭示了素数和合数的概念,又为学生进一步清晰和修正已经形成的概念提供了机会。]
3. 交流质疑。
谈话:关于素数和合数,你还想研究哪些问题?还有哪些不懂的问题?
学生可能提出:素数有多少个?最小的素数是几?最小的合数是几?有最大的素数或合数吗?
根据提出的问题,有选择地引导学生交流和探索,同时解答学生提出的问题。
三、 巩固练习,深化认识
1. 试一试。
出示题目:先找出21、23、29的所有因数,再写出这三个数分别是素数还是合数。
先让学生说一说怎样找出每一个数的所有因数,再判断这三个数是素数还是合数,并说明理由。
2. 做想想做做第2题。
先让学生按要求划一划,再说一说哪些数是素数,哪些数是合数。练习后引导学生说一说怎样判断一个数是素数还是合数。
3. 做想想做做第3题。
学生独立完成判断,并说明理由。
四、 全课总结
提问:通过今天的学习,你知道了哪些知识?有什么新的收获?
五、 举例检验
谈话:我们已经认识了素数,再回过头看一看哥德巴赫猜想(出示哥德巴赫猜想),你认为这个猜想正确吗?你能举几个例子检验一下吗?
学生举例检验。
谈话:通过检验,我们发现哥德巴赫猜想是正确的,只是至今还没有人能从理论上完全证明它。我相信,在不久的将来,一定有人能解开哥德巴赫猜想之谜,让我们一起努力吧!
[评析:利用所学知识解释和检验哥德巴赫猜想,既巩固了本节课学习的内容,又进一步激发了学生的探索愿望。]
[总评]
在典型的数学背景材料中激发探索新知的兴趣。数学是人类的一种文化。本节课的设计,教师独具匠心地把素数与合数的教学置于数学文化的背景之中,让学生感受数学文化的魅力,激发了学生对数学的兴趣。课的开始,为学生呈现了有关哥德巴赫猜想的数学背景材料,这是一个200多年来诸多数学家不能解决的问题,但中国的数学家在这方面取得了重大的突破,激发了学生的民族自豪感,数学的奇妙吸引了学生的眼球。而这一情境中素数的概念学生还不了解,解开素数的奥秘自然地成为学生的自觉需要。课的结尾,再一次提出哥德巴赫猜想的问题,让学生通过举例检验猜想的正确性,使课的首尾呈呼应之势。同时,通过简短的语言,引导学生树立探索数学奥秘的理想,体现了教师对促进学生持续发展的关注。
在有效的探索活动中逐步明确素数和合数的内涵。动手实践、自主探索与合作交流是学生学习的重要方式。本课中,教师寓素数与合数的概念于拼长方形的操作活动中,先让学生在操作中初步感受小正方形的个数与拼成长方形的种数之间的关系,将注意力集中到一个数的因数上来;接着,通过写出1~20的所有因数,并根据各个数因数的个数对这些数进行分类,引导学生逐步概括出素数和合数的共同点;最后,让学生自主阅读课本,明确素数和合数的内涵。学生在这一过程中,积累了丰富的数学活动经验,发展了自主探索的意识和数学思考能力,增强了学好数学的信心。
四年级数学教案【第四篇】
教学内容:
北师大版小学数学四年级下册第二单元“三角形边的关系”。
教材分析:
《三角形边的关系》是四年级下册第二单元认识图形中的第四课内容,是小学“空间与图形”领域中新增添的内容,是在线段、角、顶点、三角形分类等三角形知识学习的基础上的延伸。为今后学习三角形面积和应用提供了重要条件。
学生分析:
从接触三角形以来,都是针对已成立的三角形进行学习和研究的,从未涉及到:“两边之和小于第三边的三条线段不能围成三角形”这一陌生领域。在生活实际中缺乏鲜活实例和经验,固而学生在学习该段内容时,会有与生活实践相割裂的感觉。学生对较抽象的问题无法明白其含义。所以这段知识的理解对学生来说有相当的难度,学生不够自信,没有勇气参与,学习的兴趣和主动性不足,无法完全独立的进行探究活动。需要老师以学生体验过程为主,以感知探索的方法为重,给予指导。
教学目标:
1、知识与技能:使学生发现并理解三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题。培养归纳、概括能力和推理能力。
2、过程与方法:让学生通过动手实践,分析数据,体验探索和发现三角形边的关系的过程,培养学生发现问题的意识及提出问题的能力,积累探索问题的方法和经验。
3、情感态度价值观:提高学生自主探索和合作交流的能力。激发对数学的探究兴趣,引导学生树立自己探索真理的勇气和信心,享受成功的喜悦。
教学准备:
多媒体课件、实物投影、小棒若干。
教学过程:
一、导入
1、师:同学们,最近几天咱们一直在围绕哪种图形进行学习?
(生:三角形)。
师:什么是三角形?
(生:由三条线段首尾相接围成的平面图行就是三角形。)
师:围成三角形的三条线段是三角形的什么?
(生:边。)
2、解释课题
今天咱们就来共同研究三角形的三条边之间有什么奥秘。
二、探究活动
1、用4组不同长度的小棒围三角形,初步感受能否摆成三角形与小棒的长度有关。
①师:刚才咱们说了“由三条线段首尾相接围成的平面图行就是三角形”,那么如果用小棒代替线段来围三角形,得用几根小棒?
师:是不是只要给你3根小棒你就一定能围成一个三角形?
师:怎么验证咱们说得对不对呢?
(生:实际动手摆一摆、围一围。)
师:那好,课前咱们都准备了几组长度不同的小棒,接下来咱们就来摆一摆。在动手之前咱们先来一起看一看“活动要求”。
②课件出示“活动要求”。
学生自读活动要求,师:清楚活动要求了吗?开始吧!。
③学生动手摆一摆并完成活动记录表。
④汇报活动结果。
师:通过刚才的活动,是不是只要是3根小棒就一定能摆成三角形?(生:不一定。)
师:在刚才的4组小棒中,那几组能摆成三角形?哪几组摆不成三角形?你觉得能否摆成三角形跟小棒的什么有关?(生:小棒的长度。)
2、进一步探究怎样的3根小棒能摆成三角形。
①课件分别演示4组小棒摆三角形的过程。
②两根短小棒长度之后小于长小棒时摆不成三角形。
出示第3组小棒(2,3,6)。
师:这3根小棒能摆成三角形吗?最后会出现什么情况?(2厘米和3厘米的两个短小棒与6厘米的小棒重合并且没能首尾相接。)
师:为什么这3根小棒摆不成三角形?(生:小棒太短了。)
师:为什么太短了?(生:2厘米加3厘米都不到6厘米,有缺口,接不上。)
师板书:2+3<6
师:这3根小棒能摆成三角形吗?(1,2,5 2,2,8)
师:咱们来观察一下这几组小棒之间的关系,什么情况下的3根小棒摆不成三角形?
归纳:两根短小棒长度之后小于长小棒时摆不成三角形。
③两根短小棒长度之后等于长小棒时摆不成三角形。
师:既然你们觉得小棒太短了围不成三角形,那我现在把2厘米的小棒延长1厘米,这时就成了第4组小棒(3,3,6)的长度,你们刚才摆成三角形了吗?
课件演示。
师:出现了什么情况?(3厘米和3厘米的两个短小棒与6厘米的小棒刚好重合。)
板书:3+3=6
师:那么3,5,8这3根小棒能摆成吗?5,6,11呢?
师:那么怎样的3根小棒也摆不成三角形呢?
归纳:两根短小棒长度之后等于长小棒时也摆不成三角形。
④小结
师:咱们能不能用一句话概括摆不成三角形的两种情况?
生:两根短小棒长度之后小于或等于长小棒时摆不成三角形。
⑤探究怎样的3根小棒能摆成三角形。
师:现在咱们知道了两根短小棒长度之后小于或等于长小棒时摆不成三角形,那大家能不能大胆猜测一下,怎样的3根小棒能摆成三角形?
生:两根短小棒长度之后大于长小棒时能摆成三角形。
师:是这样吗?咱们再来看看能摆成三角形的那两组小棒的长度,算一算是否验证了咱们的猜想。
学生算一算验证猜测。
师:那么怎样的3根小棒能摆成三角形?
归纳:两根短小棒长度之后大于长小棒时能摆成三角形。
3、进一步探究三角形边之间的关系
①师:这是咱们摆成三角形的那2组小棒。当我们用小棒摆成三角形后,小棒相当于三角形的什么?(生:三角形的边。)
②师:请你算一算,比一比。
学生同桌两人交流。
个别学生汇报计算结果。
③师:那么三角形的三条边之间有什么关系?
学生思考。
④归纳总结
三角形任意两边之和大于第三边。(板书)
师:这就是三角形边之间的关系。刚才咱们是从这两个三≤≥角形发现的这个结论。现在咱们利用课前画的`任意三角形来算一算,看是不是任意一个三角形都具备这样的规律。
(学生计算验证)
三、随堂练习
师:通过刚才的学习我们知道了三角形任意两边之和大于第三边的规律。但学习的最终目的是学以致用。下面陈老师准备了一些习题,敢不敢试一试?
1、淘气从家到学校有两条路可以走。从下图中你能看出那条路近吗?用今天所学的知识说说你的理由。
《三角形边的关系》教学设计
2、完成“练一练”1-3
四、布置作业
练一练。4
五、全课小结